Impact of Manufacturing Tolerances on Stress in a Turbine Blade Fir-Tree Root

Q4 Engineering
G. Moneta, J. Jachimowicz
{"title":"Impact of Manufacturing Tolerances on Stress in a Turbine Blade Fir-Tree Root","authors":"G. Moneta, J. Jachimowicz","doi":"10.2478/fas-2020-0009","DOIUrl":null,"url":null,"abstract":"Abstract Low Cycle Fatigue (LCF) is one of most common mechanisms behind turbine blade failures. The reason is high stress concentration in notch areas, like fir-tree root groves, which can cause cyclic stress beyond the safe threshold. The stress levels strictly depend on the manufacturing accuracy of the fir-tree lock (for both fitted together: blade root and disk groove). The probabilistic study aimed at determination of stress was performed using Finite Element Method (FEM) simulation on a population of 1000 turbine models (disk + blades +friction dampers), where fir-tree lock dimensions were sampled according to the normal distribution, within limits specified in the documentation. The studies were performed for different manufacturing quality levels: 3-Sigma, 6-Sigma and 3-Sigma with tolerance ranges reduced twice. Based on the results, the probabilistic distributions, probabilities and expected ranges of values could be determined for: material plastification, stress, strain, LCF lifetime, etc. The study has shown how each tooth of the root is loaded and how wide a stress range should be expected in each groove. That gives information on how the definition of tolerances should be modified to make the construction more optimal, more robust, with lower likelihood of damage, taking into account the cost-quality balance. It also shows how the Six Sigma philosophy can improve the safety of the construction, its repeatability and predictability. Additionally, the presented numerical study is a few orders of magnitude more cost- and time-effective than experiment.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2020 1","pages":"92 - 101"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue of Aircraft Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fas-2020-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Low Cycle Fatigue (LCF) is one of most common mechanisms behind turbine blade failures. The reason is high stress concentration in notch areas, like fir-tree root groves, which can cause cyclic stress beyond the safe threshold. The stress levels strictly depend on the manufacturing accuracy of the fir-tree lock (for both fitted together: blade root and disk groove). The probabilistic study aimed at determination of stress was performed using Finite Element Method (FEM) simulation on a population of 1000 turbine models (disk + blades +friction dampers), where fir-tree lock dimensions were sampled according to the normal distribution, within limits specified in the documentation. The studies were performed for different manufacturing quality levels: 3-Sigma, 6-Sigma and 3-Sigma with tolerance ranges reduced twice. Based on the results, the probabilistic distributions, probabilities and expected ranges of values could be determined for: material plastification, stress, strain, LCF lifetime, etc. The study has shown how each tooth of the root is loaded and how wide a stress range should be expected in each groove. That gives information on how the definition of tolerances should be modified to make the construction more optimal, more robust, with lower likelihood of damage, taking into account the cost-quality balance. It also shows how the Six Sigma philosophy can improve the safety of the construction, its repeatability and predictability. Additionally, the presented numerical study is a few orders of magnitude more cost- and time-effective than experiment.
制造公差对涡轮叶片枞树根部应力的影响
摘要低周疲劳(LCF)是汽轮机叶片失效最常见的机制之一。原因是应力集中在缺口区域,如冷杉树根林,这可能导致循环应力超过安全阈值。应力水平严格取决于枞树锁的制造精度(对于安装在一起的叶片根部和圆盘凹槽)。旨在确定应力的概率研究是使用有限元法(FEM)模拟对1000个涡轮机模型(圆盘+叶片+摩擦阻尼器)进行的,其中根据正态分布在文件规定的范围内对枞树锁尺寸进行采样。研究针对不同的制造质量水平进行:3西格玛、6西格玛和3西格玛,公差范围减少了两次。基于这些结果,可以确定以下值的概率分布、概率和预期范围:材料塑性、应力、应变、LCF寿命等。研究表明了根部的每个齿是如何加载的,以及每个凹槽中的应力范围应该有多宽。这提供了关于如何修改公差定义的信息,以使结构更优化、更坚固、损坏可能性更低,同时考虑到成本-质量平衡。它还展示了六西格玛哲学如何提高施工的安全性、可重复性和可预测性。此外,所提出的数值研究比实验的成本和时间效率高几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fatigue of Aircraft Structures
Fatigue of Aircraft Structures Engineering-Safety, Risk, Reliability and Quality
CiteScore
0.40
自引率
0.00%
发文量
0
期刊介绍: The publication focuses on problems of aeronautical fatigue and structural integrity. The preferred topics include: full-scale fatigue testing of aircraft and aircraft structural components, fatigue of materials and structures, advanced materials and innovative structural concepts, damage tolerant design of aircraft structure, life extension and management of ageing fleets, structural health monitoring and loads, fatigue crack growth and life prediction methods, NDT inspections, airworthiness considerations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信