Linear Algorithms for Robust and Scalable Nonparametric Multiclass Probability Estimation

Liyun Zeng, Hao Helen Zhang
{"title":"Linear Algorithms for Robust and Scalable Nonparametric Multiclass Probability Estimation","authors":"Liyun Zeng, Hao Helen Zhang","doi":"10.6339/22-jds1069","DOIUrl":null,"url":null,"abstract":"Multiclass probability estimation is the problem of estimating conditional probabilities of a data point belonging to a class given its covariate information. It has broad applications in statistical analysis and data science. Recently a class of weighted Support Vector Machines (wSVMs) has been developed to estimate class probabilities through ensemble learning for K-class problems (Wu et al., 2010; Wang et al., 2019), where K is the number of classes. The estimators are robust and achieve high accuracy for probability estimation, but their learning is implemented through pairwise coupling, which demands polynomial time in K. In this paper, we propose two new learning schemes, the baseline learning and the One-vs-All (OVA) learning, to further improve wSVMs in terms of computational efficiency and estimation accuracy. In particular, the baseline learning has optimal computational complexity in the sense that it is linear in K. Though not the most efficient in computation, the OVA is found to have the best estimation accuracy among all the procedures under comparison. The resulting estimators are distribution-free and shown to be consistent. We further conduct extensive numerical experiments to demonstrate their finite sample performance.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/22-jds1069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiclass probability estimation is the problem of estimating conditional probabilities of a data point belonging to a class given its covariate information. It has broad applications in statistical analysis and data science. Recently a class of weighted Support Vector Machines (wSVMs) has been developed to estimate class probabilities through ensemble learning for K-class problems (Wu et al., 2010; Wang et al., 2019), where K is the number of classes. The estimators are robust and achieve high accuracy for probability estimation, but their learning is implemented through pairwise coupling, which demands polynomial time in K. In this paper, we propose two new learning schemes, the baseline learning and the One-vs-All (OVA) learning, to further improve wSVMs in terms of computational efficiency and estimation accuracy. In particular, the baseline learning has optimal computational complexity in the sense that it is linear in K. Though not the most efficient in computation, the OVA is found to have the best estimation accuracy among all the procedures under comparison. The resulting estimators are distribution-free and shown to be consistent. We further conduct extensive numerical experiments to demonstrate their finite sample performance.
鲁棒可扩展的非参数多类概率估计的线性算法
多类概率估计是在给定协变信息的情况下,估计属于一类的数据点的条件概率的问题。它在统计分析和数据科学中有着广泛的应用。最近,已经开发了一类加权支持向量机(wSVM),用于通过集合学习来估计K类问题的类概率(Wu et al.,2010;Wang et al.,2019),其中K是类的数量。估计量是鲁棒的,并且实现了高精度的概率估计,但它们的学习是通过成对耦合实现的,这需要K中的多项式时间。在本文中,我们提出了两种新的学习方案,基线学习和一对一(OVA)学习,以在计算效率和估计精度方面进一步提高wSVM。特别地,基线学习具有最佳的计算复杂度,因为它在K中是线性的。尽管在计算中不是最有效的,但发现OVA在所比较的所有过程中具有最佳的估计精度。所得到的估计量是无分布的,并且被证明是一致的。我们进一步进行了大量的数值实验来证明它们的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信