Artificial neural networks model: Neuropsychological variables and their relationship with body fat percentage in adults

Q4 Psychology
Víctor Ricardo Aguilera Sosa, Bárbara Itzel Méndez, María Magdalena Murillo, N. Pérez-Vielma, Gerardo Leija-Alva, Itzihuari Iratzi Montufar-Burgos, Angélica Serena Alvarado-García, Roxana Sarai Duran-Arciniega
{"title":"Artificial neural networks model: Neuropsychological variables and their relationship with body fat percentage in adults","authors":"Víctor Ricardo Aguilera Sosa, Bárbara Itzel Méndez, María Magdalena Murillo, N. Pérez-Vielma, Gerardo Leija-Alva, Itzihuari Iratzi Montufar-Burgos, Angélica Serena Alvarado-García, Roxana Sarai Duran-Arciniega","doi":"10.22201/fesi.20071523e.2022.1.718","DOIUrl":null,"url":null,"abstract":"There is a growing interest to understand the neural functions and substrates of complex cognitive processes related to Obesity (OB). Artificial Intelligence (AI) is being applied, specifically the perceptron model of Artificial Neural Networks (ANN) in non-communicable chronic diseases, to identify with greater certainty the connective factors (synaptic networks) between the input variables and the output variables associated. Objective : Identify the synaptic weights of the ANN whose input variables are the executive functions (EF) and healthy lifestyles as predictors of Body Fat Percentage (BFP) in a group of adult subjects with different levels of BFP. Methods : It was an exploratory, is a nonlinear variables with a Backpropagation allows for to based on least squares correction, and its main objective is that the networks to 40 participants aged between 18-38 years. BFP was measured using a RENPHO ES-24M Smart Body Composition Scale. The perceptron ANN model with ten trials was applied with a multila-yer-perceptron. Results : The ANN showed that the sensory variables with greater synaptic weight for BFP were Stroop A and B Errors and Successes of BANFE-2, and OQ scales Rationalizations and Healthy Habits. Conclusions : ANN proved to be important in the simultaneous analysis of neuropsychological and healthy lifestyle data for the analysis of OB prevention and treatment by identifying the variables that are closely related. These findings open the door for the use of non-li-near analysis models, which allow the identification of relationships of different weights, between input and output variables, to more effectively direct interventions to modify obesity habits.","PeriodicalId":38032,"journal":{"name":"Revista Mexicana de Trastornos Alimentarios","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana de Trastornos Alimentarios","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/fesi.20071523e.2022.1.718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0

Abstract

There is a growing interest to understand the neural functions and substrates of complex cognitive processes related to Obesity (OB). Artificial Intelligence (AI) is being applied, specifically the perceptron model of Artificial Neural Networks (ANN) in non-communicable chronic diseases, to identify with greater certainty the connective factors (synaptic networks) between the input variables and the output variables associated. Objective : Identify the synaptic weights of the ANN whose input variables are the executive functions (EF) and healthy lifestyles as predictors of Body Fat Percentage (BFP) in a group of adult subjects with different levels of BFP. Methods : It was an exploratory, is a nonlinear variables with a Backpropagation allows for to based on least squares correction, and its main objective is that the networks to 40 participants aged between 18-38 years. BFP was measured using a RENPHO ES-24M Smart Body Composition Scale. The perceptron ANN model with ten trials was applied with a multila-yer-perceptron. Results : The ANN showed that the sensory variables with greater synaptic weight for BFP were Stroop A and B Errors and Successes of BANFE-2, and OQ scales Rationalizations and Healthy Habits. Conclusions : ANN proved to be important in the simultaneous analysis of neuropsychological and healthy lifestyle data for the analysis of OB prevention and treatment by identifying the variables that are closely related. These findings open the door for the use of non-li-near analysis models, which allow the identification of relationships of different weights, between input and output variables, to more effectively direct interventions to modify obesity habits.
人工神经网络模型:成人神经心理学变量及其与体脂百分比的关系
人们对理解与肥胖(OB)相关的复杂认知过程的神经功能和底物越来越感兴趣。人工智能(AI),特别是人工神经网络(ANN)在非传染性慢性病中的感知器模型,正在被应用,以更确定地识别输入变量和相关输出变量之间的连接因素(突触网络)。目的:在一组具有不同水平体脂百分比的成年受试者中,确定以执行功能(EF)和健康生活方式为输入变量的神经网络的突触权重作为体脂百分比(BFP)的预测因子。方法:这是一个探索性的,是一个具有反向传播的非线性变量,允许基于最小二乘法进行校正,其主要目标是将网络中40名年龄在18-38岁之间的参与者。使用RENPHO ES-24M智能身体成分量表测量BFP。将经过十次试验的感知器神经网络模型应用于多层感知器。结果:神经网络显示,BFP突触权重较大的感觉变量是BANFE-2的Stroop A和B错误和成功,以及OQ量表合理化和健康习惯。结论:人工神经网络在同时分析神经心理学和健康生活方式数据方面被证明是重要的,通过识别密切相关的变量来分析产科的预防和治疗。这些发现为使用非李分析模型打开了大门,该模型可以识别输入和输出变量之间不同权重的关系,从而更有效地指导干预措施来改变肥胖习惯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Mexicana de Trastornos Alimentarios
Revista Mexicana de Trastornos Alimentarios Psychology-Clinical Psychology
CiteScore
0.10
自引率
0.00%
发文量
44
期刊介绍: La política editorial de la revista es publicar artículos sobre temas relevantes del comportamiento alimentario, como ciencia y profesión, que sean de interés y tengan impacto en esta área de conocimiento. La revista acepta para su publicación, artículos de investigación básica y aplicada, así como de carácter teórico o emprírico, sobre las principales disciplinas (psicología, psiquiatría, medicina, biología, nutrición, etc..) que signifiquen un avance en el área del comportamiento alimentario. Se publican artículos originales (investigaciones), artículos de revisión y casos clínicos Excepcionalmente se aceptarán trabajos teóricos; éstos deberán significar una contribución sobre el estado actual de alguno de los tópicos relacionados a la alimentación. Dentro de su proceso de revisión por pares (doble-ciego), cuenta con la participación de investigadores de alto nivel y probada calidad científica y metodológica para la crítica editorial de los manuscritos que recibe. La crítica editorial en la Revista Mexicana de Trastornos Alimentarios/Mexican Journal of Eating Disorders cumple dos finalidades: por un lado, hacer una recomendación debidamente fundamentada sobre la pertinencia de un manuscrito, y por otro, retroalimentar a los autores sobre la calidad del trabajo, indicando no sólo aciertos y fallas, sino describiendo, cuando se trate de fallas, los pasos que debería seguir el autor para corregirlas. Los textos presentados para su posible publicación estarán sujetos a la programación de la revista y a la evaluación que realicen los editores.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信