{"title":"Artificial neural networks model: Neuropsychological variables and their relationship with body fat percentage in adults","authors":"Víctor Ricardo Aguilera Sosa, Bárbara Itzel Méndez, María Magdalena Murillo, N. Pérez-Vielma, Gerardo Leija-Alva, Itzihuari Iratzi Montufar-Burgos, Angélica Serena Alvarado-García, Roxana Sarai Duran-Arciniega","doi":"10.22201/fesi.20071523e.2022.1.718","DOIUrl":null,"url":null,"abstract":"There is a growing interest to understand the neural functions and substrates of complex cognitive processes related to Obesity (OB). Artificial Intelligence (AI) is being applied, specifically the perceptron model of Artificial Neural Networks (ANN) in non-communicable chronic diseases, to identify with greater certainty the connective factors (synaptic networks) between the input variables and the output variables associated. Objective : Identify the synaptic weights of the ANN whose input variables are the executive functions (EF) and healthy lifestyles as predictors of Body Fat Percentage (BFP) in a group of adult subjects with different levels of BFP. Methods : It was an exploratory, is a nonlinear variables with a Backpropagation allows for to based on least squares correction, and its main objective is that the networks to 40 participants aged between 18-38 years. BFP was measured using a RENPHO ES-24M Smart Body Composition Scale. The perceptron ANN model with ten trials was applied with a multila-yer-perceptron. Results : The ANN showed that the sensory variables with greater synaptic weight for BFP were Stroop A and B Errors and Successes of BANFE-2, and OQ scales Rationalizations and Healthy Habits. Conclusions : ANN proved to be important in the simultaneous analysis of neuropsychological and healthy lifestyle data for the analysis of OB prevention and treatment by identifying the variables that are closely related. These findings open the door for the use of non-li-near analysis models, which allow the identification of relationships of different weights, between input and output variables, to more effectively direct interventions to modify obesity habits.","PeriodicalId":38032,"journal":{"name":"Revista Mexicana de Trastornos Alimentarios","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana de Trastornos Alimentarios","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/fesi.20071523e.2022.1.718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0
Abstract
There is a growing interest to understand the neural functions and substrates of complex cognitive processes related to Obesity (OB). Artificial Intelligence (AI) is being applied, specifically the perceptron model of Artificial Neural Networks (ANN) in non-communicable chronic diseases, to identify with greater certainty the connective factors (synaptic networks) between the input variables and the output variables associated. Objective : Identify the synaptic weights of the ANN whose input variables are the executive functions (EF) and healthy lifestyles as predictors of Body Fat Percentage (BFP) in a group of adult subjects with different levels of BFP. Methods : It was an exploratory, is a nonlinear variables with a Backpropagation allows for to based on least squares correction, and its main objective is that the networks to 40 participants aged between 18-38 years. BFP was measured using a RENPHO ES-24M Smart Body Composition Scale. The perceptron ANN model with ten trials was applied with a multila-yer-perceptron. Results : The ANN showed that the sensory variables with greater synaptic weight for BFP were Stroop A and B Errors and Successes of BANFE-2, and OQ scales Rationalizations and Healthy Habits. Conclusions : ANN proved to be important in the simultaneous analysis of neuropsychological and healthy lifestyle data for the analysis of OB prevention and treatment by identifying the variables that are closely related. These findings open the door for the use of non-li-near analysis models, which allow the identification of relationships of different weights, between input and output variables, to more effectively direct interventions to modify obesity habits.
期刊介绍:
La política editorial de la revista es publicar artículos sobre temas relevantes del comportamiento alimentario, como ciencia y profesión, que sean de interés y tengan impacto en esta área de conocimiento. La revista acepta para su publicación, artículos de investigación básica y aplicada, así como de carácter teórico o emprírico, sobre las principales disciplinas (psicología, psiquiatría, medicina, biología, nutrición, etc..) que signifiquen un avance en el área del comportamiento alimentario. Se publican artículos originales (investigaciones), artículos de revisión y casos clínicos Excepcionalmente se aceptarán trabajos teóricos; éstos deberán significar una contribución sobre el estado actual de alguno de los tópicos relacionados a la alimentación. Dentro de su proceso de revisión por pares (doble-ciego), cuenta con la participación de investigadores de alto nivel y probada calidad científica y metodológica para la crítica editorial de los manuscritos que recibe. La crítica editorial en la Revista Mexicana de Trastornos Alimentarios/Mexican Journal of Eating Disorders cumple dos finalidades: por un lado, hacer una recomendación debidamente fundamentada sobre la pertinencia de un manuscrito, y por otro, retroalimentar a los autores sobre la calidad del trabajo, indicando no sólo aciertos y fallas, sino describiendo, cuando se trate de fallas, los pasos que debería seguir el autor para corregirlas. Los textos presentados para su posible publicación estarán sujetos a la programación de la revista y a la evaluación que realicen los editores.