Image-based Product Recommendation Method for E-commerce Applications Using Convolutional Neural Networks

IF 0.8 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Pegah Malekpour Alamdari, N. J. Navimipour, M. Hosseinzadeh, Ali Asghar Safaei, A. Darwesh
{"title":"Image-based Product Recommendation Method for E-commerce Applications Using Convolutional Neural Networks","authors":"Pegah Malekpour Alamdari, N. J. Navimipour, M. Hosseinzadeh, Ali Asghar Safaei, A. Darwesh","doi":"10.18267/j.aip.167","DOIUrl":null,"url":null,"abstract":"Recommender systems (RS) are designed to eliminate the information overload problem in today's e-commerce platforms and other data-centric online services. They help users explore and exploit the system's information environment utilizing implicit and explicit data from internal e-commerce systems and user interactions. Today's product catalogues include pictures to provide visual detail at a glance. This approach can effectively convert potential buyers into customers. Since most e-commerce stores use product images to promote, arouse users' visual desires and encourage them to buy products, this paper develops an image-based RS using deep learning techniques. To perform the research, we use five convolutional neural network (CNN) models to extract the features of the products' images. Then, the system uses the features to calculate the similarity between images. The selected CNN models are VGG16, VGG19, ResNet50, Inception V3 and Xception. We also analysed four versions of the MovieLens dataset to demonstrate the accuracy improvement of the recommendations, including 100k, 1M, 10M and 20M. Results of the experiment showed a significant increase in accuracy compared with traditional approaches. Also, we express many related open issues including use of multiple images per item, different similarity metrics, other CNN models, and the hybridization of image-based and different RS techniques for future studies. This method also provides more accurate product recommendations on e-commerce platforms than traditional methods.","PeriodicalId":36592,"journal":{"name":"Acta Informatica Pragensia","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica Pragensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18267/j.aip.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

Recommender systems (RS) are designed to eliminate the information overload problem in today's e-commerce platforms and other data-centric online services. They help users explore and exploit the system's information environment utilizing implicit and explicit data from internal e-commerce systems and user interactions. Today's product catalogues include pictures to provide visual detail at a glance. This approach can effectively convert potential buyers into customers. Since most e-commerce stores use product images to promote, arouse users' visual desires and encourage them to buy products, this paper develops an image-based RS using deep learning techniques. To perform the research, we use five convolutional neural network (CNN) models to extract the features of the products' images. Then, the system uses the features to calculate the similarity between images. The selected CNN models are VGG16, VGG19, ResNet50, Inception V3 and Xception. We also analysed four versions of the MovieLens dataset to demonstrate the accuracy improvement of the recommendations, including 100k, 1M, 10M and 20M. Results of the experiment showed a significant increase in accuracy compared with traditional approaches. Also, we express many related open issues including use of multiple images per item, different similarity metrics, other CNN models, and the hybridization of image-based and different RS techniques for future studies. This method also provides more accurate product recommendations on e-commerce platforms than traditional methods.
基于卷积神经网络的电子商务应用图像产品推荐方法
推荐系统(RS)旨在消除当今电子商务平台和其他以数据为中心的在线服务中的信息过载问题。它们利用来自内部电子商务系统和用户交互的隐式和显式数据,帮助用户探索和利用系统的信息环境。今天的产品目录包括图片,以提供一目了然的视觉细节。这种方法可以有效地将潜在买家转化为客户。鉴于大多数电子商务商店都使用产品图像来宣传、唤起用户的视觉欲望并鼓励他们购买产品,本文利用深度学习技术开发了一种基于图像的RS。为了进行研究,我们使用了五个卷积神经网络(CNN)模型来提取产品图像的特征。然后,系统使用这些特征来计算图像之间的相似度。选择的CNN模型有VGG16、VGG19、ResNet50、Inception V3和Xception。我们还分析了MovieLens数据集的四个版本,以证明建议的准确性提高,包括100k、1M、10M和20M。实验结果表明,与传统方法相比,准确度显著提高。此外,我们表达了许多相关的开放性问题,包括每个项目使用多个图像、不同的相似性度量、其他CNN模型,以及基于图像和不同RS技术的混合,以供未来研究。这种方法也比传统方法在电子商务平台上提供了更准确的产品推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Informatica Pragensia
Acta Informatica Pragensia Social Sciences-Library and Information Sciences
CiteScore
1.70
自引率
0.00%
发文量
26
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信