Equilibria of vortex type Hamiltonians on closed surfaces

IF 0.7 4区 数学 Q2 MATHEMATICS
M. Ahmedou, T. Bartsch, Tim Fiernkranz
{"title":"Equilibria of vortex type Hamiltonians on closed surfaces","authors":"M. Ahmedou, T. Bartsch, Tim Fiernkranz","doi":"10.12775/tmna.2023.003","DOIUrl":null,"url":null,"abstract":"We prove the existence of critical points of vortex type Hamiltonians\n \\[\n H(p_1,\\ldots, p_N)\n = \\sum_{{i,j=1}\\atop{i\\ne j}}\n^N \\Gamma_i\\Gamma_jG(p_i,p_j)+\\Psi(p_1,\\dots,p_N)\n \\]\non a closed Riemannian surface $(\\Sigma,g)$ which is not homeomorphic to the sphere\nor the projective plane. Here $G$ denotes the Green function of the Laplace-Beltrami\n operator in $\\Sigma$, $\\Psi\\colon \\Sigma^N\\to\\mathbb{R}$ may be any function of class ${\\mathcal C}^1$,\nand $\\Gamma_1,\\dots,\\Gamma_N\\in\\mathbb{R}\\setminus\\{0\\}$ are the vorticities.\n The Kirchhoff-Routh Hamiltonian from fluid dynamics corresponds to\n $\\Psi(p) = -\\sum\\limits_{i=1}^N \\Gamma_i^2h(p_i,p_i)$ where\n$h\\colon \\Sigma\\times\\Sigma\\to\\mathbb{R}$ is the regular part of the Laplace-Beltrami operator.\nWe obtain critical points $p=(p_1,\\dots,p_N)$ for arbitrary $N$ and vorticities\n$(\\Gamma_1,\\dots,\\Gamma_N)$ in $\\mathbb{R}^N\\setminus V$ where $V$ is an explicitly given algebraic variety of codimension 1.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2023.003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We prove the existence of critical points of vortex type Hamiltonians \[ H(p_1,\ldots, p_N) = \sum_{{i,j=1}\atop{i\ne j}} ^N \Gamma_i\Gamma_jG(p_i,p_j)+\Psi(p_1,\dots,p_N) \] on a closed Riemannian surface $(\Sigma,g)$ which is not homeomorphic to the sphere or the projective plane. Here $G$ denotes the Green function of the Laplace-Beltrami operator in $\Sigma$, $\Psi\colon \Sigma^N\to\mathbb{R}$ may be any function of class ${\mathcal C}^1$, and $\Gamma_1,\dots,\Gamma_N\in\mathbb{R}\setminus\{0\}$ are the vorticities. The Kirchhoff-Routh Hamiltonian from fluid dynamics corresponds to $\Psi(p) = -\sum\limits_{i=1}^N \Gamma_i^2h(p_i,p_i)$ where $h\colon \Sigma\times\Sigma\to\mathbb{R}$ is the regular part of the Laplace-Beltrami operator. We obtain critical points $p=(p_1,\dots,p_N)$ for arbitrary $N$ and vorticities $(\Gamma_1,\dots,\Gamma_N)$ in $\mathbb{R}^N\setminus V$ where $V$ is an explicitly given algebraic variety of codimension 1.
闭曲面上涡旋型哈密顿量的平衡
在非球面或射影平面同纯的封闭黎曼曲面$(\Sigma,g)$上,证明了涡旋型哈密顿量\[ H(p_1,\ldots, p_N) = \sum_{{i,j=1}\atop{i\ne j}}^N \Gamma_i\Gamma_jG(p_i,p_j)+\Psi(p_1,\dots,p_N) \]临界点的存在性。其中$G$为$\Sigma$中Laplace-Beltrami算子的Green函数,$\Psi\colon \Sigma^N\to\mathbb{R}$可以是${\mathcal C}^1$类的任意函数,$\Gamma_1,\dots,\Gamma_N\in\mathbb{R}\setminus\{0\}$为涡度。流体力学中的Kirchhoff-Routh hamilton量对应于$\Psi(p) = -\sum\limits_{i=1}^N \Gamma_i^2h(p_i,p_i)$,其中$h\colon \Sigma\times\Sigma\to\mathbb{R}$是Laplace-Beltrami算子的正则部分。我们获得了任意$N$的临界点$p=(p_1,\dots,p_N)$和$\mathbb{R}^N\setminus V$中的涡度$(\Gamma_1,\dots,\Gamma_N)$,其中$V$是显式给定的余维数1的代数变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信