Towards optimal control of concentric tube robots in stereotactic neurosurgery

IF 1.8 4区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
K. Flaßkamp, K. Worthmann, J. Mühlenhoff, C. Greiner-Petter, C. Büskens, J. Oertel, D. Keiner, T. Sattel
{"title":"Towards optimal control of concentric tube robots in stereotactic neurosurgery","authors":"K. Flaßkamp, K. Worthmann, J. Mühlenhoff, C. Greiner-Petter, C. Büskens, J. Oertel, D. Keiner, T. Sattel","doi":"10.1080/13873954.2019.1690004","DOIUrl":null,"url":null,"abstract":"ABSTRACT We consider the design and control problem of concentric tubes used in stereotactic neurosurgery. The goal is to optimally reach a configuration of the cannula linking an entry point on the skullcap to a pre-specified region inside the brain. Key issues related to this task are the mechanical behaviour of the cannula and the topography of the brain. We formulate an optimal control problem in order to determine a feasible path while minimizing brain damage caused by missing follow-the-leader behaviour. Numerical results show the potential of the proposed approach.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"25 1","pages":"560 - 574"},"PeriodicalIF":1.8000,"publicationDate":"2019-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2019.1690004","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2019.1690004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5

Abstract

ABSTRACT We consider the design and control problem of concentric tubes used in stereotactic neurosurgery. The goal is to optimally reach a configuration of the cannula linking an entry point on the skullcap to a pre-specified region inside the brain. Key issues related to this task are the mechanical behaviour of the cannula and the topography of the brain. We formulate an optimal control problem in order to determine a feasible path while minimizing brain damage caused by missing follow-the-leader behaviour. Numerical results show the potential of the proposed approach.
立体定向神经外科同心管机器人的最优控制研究
摘要:探讨立体定向神经外科中同心管的设计与控制问题。我们的目标是使套管的结构达到最佳状态,将头盖骨上的入口点连接到大脑内预先指定的区域。与这项任务相关的关键问题是套管的机械行为和大脑的地形。我们制定了一个最优控制问题,以确定一个可行的路径,同时最大限度地减少由于缺少跟随领导行为而造成的脑损伤。数值结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems. The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application. MCMDS welcomes original articles on a range of topics including: -methods of modelling and simulation- automation of modelling- qualitative and modular modelling- data-based and learning-based modelling- uncertainties and the effects of modelling errors on system performance- application of modelling to complex real-world systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信