K. Flaßkamp, K. Worthmann, J. Mühlenhoff, C. Greiner-Petter, C. Büskens, J. Oertel, D. Keiner, T. Sattel
{"title":"Towards optimal control of concentric tube robots in stereotactic neurosurgery","authors":"K. Flaßkamp, K. Worthmann, J. Mühlenhoff, C. Greiner-Petter, C. Büskens, J. Oertel, D. Keiner, T. Sattel","doi":"10.1080/13873954.2019.1690004","DOIUrl":null,"url":null,"abstract":"ABSTRACT We consider the design and control problem of concentric tubes used in stereotactic neurosurgery. The goal is to optimally reach a configuration of the cannula linking an entry point on the skullcap to a pre-specified region inside the brain. Key issues related to this task are the mechanical behaviour of the cannula and the topography of the brain. We formulate an optimal control problem in order to determine a feasible path while minimizing brain damage caused by missing follow-the-leader behaviour. Numerical results show the potential of the proposed approach.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"25 1","pages":"560 - 574"},"PeriodicalIF":1.8000,"publicationDate":"2019-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2019.1690004","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2019.1690004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT We consider the design and control problem of concentric tubes used in stereotactic neurosurgery. The goal is to optimally reach a configuration of the cannula linking an entry point on the skullcap to a pre-specified region inside the brain. Key issues related to this task are the mechanical behaviour of the cannula and the topography of the brain. We formulate an optimal control problem in order to determine a feasible path while minimizing brain damage caused by missing follow-the-leader behaviour. Numerical results show the potential of the proposed approach.
期刊介绍:
Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems.
The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application.
MCMDS welcomes original articles on a range of topics including:
-methods of modelling and simulation-
automation of modelling-
qualitative and modular modelling-
data-based and learning-based modelling-
uncertainties and the effects of modelling errors on system performance-
application of modelling to complex real-world systems.