On generalized (k, r)-Pell and (k, r)-Pell–Lucas numbers

IF 0.4 Q4 MATHEMATICS
B. Kuloğlu, E. Özkan
{"title":"On generalized (k, r)-Pell and (k, r)-Pell–Lucas numbers","authors":"B. Kuloğlu, E. Özkan","doi":"10.7546/nntdm.2022.28.4.765-777","DOIUrl":null,"url":null,"abstract":"We introduce new kinds of k-Pell and k-Pell–Lucas numbers related to the distance between numbers by a recurrence relation and show their relation to the (k,r)-Pell and (k,r)-Pell–Lucas numbers. These sequences differ both according to the value of the natural number k and the value of a new parameter r in the definition of this distance. We give several properties of these sequences. In addition, we establish the generating functions, some important identities, as well as the sum of the terms of the generalized (k,r)-Pell and (k,r)-Pell–Lucas numbers. Furthermore, we indicate another way to obtain the generalized (k,r)-Pell and (k,r)-Pell–Lucas sequences from the generating function, in connection to graphs.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2022.28.4.765-777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce new kinds of k-Pell and k-Pell–Lucas numbers related to the distance between numbers by a recurrence relation and show their relation to the (k,r)-Pell and (k,r)-Pell–Lucas numbers. These sequences differ both according to the value of the natural number k and the value of a new parameter r in the definition of this distance. We give several properties of these sequences. In addition, we establish the generating functions, some important identities, as well as the sum of the terms of the generalized (k,r)-Pell and (k,r)-Pell–Lucas numbers. Furthermore, we indicate another way to obtain the generalized (k,r)-Pell and (k,r)-Pell–Lucas sequences from the generating function, in connection to graphs.
关于广义(k,r)-Pell和(k,r)-Pell-Lucas数
我们引入了通过递推关系与数之间的距离相关的新的k-Pell和k-Pell–Lucas数,并展示了它们与(k,r)-Pell和(k,r)-Pell–Lucas数字的关系。在该距离的定义中,这些序列根据自然数k的值和新参数r的值而不同。我们给出了这些序列的几个性质。此外,我们还建立了生成函数,一些重要的恒等式,以及广义(k,r)-Pell和(k,r)-Pell–Lucas数的项的和。此外,我们还指出了从生成函数中获得广义(k,r)-Pell和(k,r)-Pell–Lucas序列的另一种方法,与图有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信