An investigation of concrete stress-strain behavior by the image analysis method

IF 1.4 4区 工程技术
Mahfuz Pekgöz, O. Günaydın
{"title":"An investigation of concrete stress-strain behavior by the image analysis method","authors":"Mahfuz Pekgöz, O. Günaydın","doi":"10.7764/rdlc.20.2.308","DOIUrl":null,"url":null,"abstract":"Concrete is a composite load-bearing building material. The deformation behavior of load-bearing materials under load is vital for the building system. Investigation of these brittle and quasi-brittle behavior patterns at various load levels provides an advantage in the evaluation of mechanical properties. In this study, the deformations occurring within the concrete samples in different stress-strain regions were investigated using an image analysis technique. The experimental samples experienced elastic-limit loading for two hours to clearly monitor the deformations at elastic, plastic, and breaking points. For the microstructure studies, the samples were prepared with epoxy for image analysis. Thin-sections were taken from each series of epoxy-impregnated concrete test samples, examined under a microscope, and photographed. Deformation studies on the digital photographs were carried out by the image analysis method. The results show that crack formation and crack types change because of increased stress and deformations. Crack formations within the concrete are parallel to the loading direction and occurred mainly in the aggregate–cement-paste interface. At 85% of the ultimate stress, crack length was measured as 0.665-29.505 mm and crack width 0.180-4.128 mm, while the crack length was 0.305-32.688 mm and crack width were 0.106-2.906 mm at fracture stress.","PeriodicalId":54473,"journal":{"name":"Revista de la Construccion","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7764/rdlc.20.2.308","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Concrete is a composite load-bearing building material. The deformation behavior of load-bearing materials under load is vital for the building system. Investigation of these brittle and quasi-brittle behavior patterns at various load levels provides an advantage in the evaluation of mechanical properties. In this study, the deformations occurring within the concrete samples in different stress-strain regions were investigated using an image analysis technique. The experimental samples experienced elastic-limit loading for two hours to clearly monitor the deformations at elastic, plastic, and breaking points. For the microstructure studies, the samples were prepared with epoxy for image analysis. Thin-sections were taken from each series of epoxy-impregnated concrete test samples, examined under a microscope, and photographed. Deformation studies on the digital photographs were carried out by the image analysis method. The results show that crack formation and crack types change because of increased stress and deformations. Crack formations within the concrete are parallel to the loading direction and occurred mainly in the aggregate–cement-paste interface. At 85% of the ultimate stress, crack length was measured as 0.665-29.505 mm and crack width 0.180-4.128 mm, while the crack length was 0.305-32.688 mm and crack width were 0.106-2.906 mm at fracture stress.
用图像分析方法研究混凝土应力-应变特性
混凝土是一种复合承重建筑材料。承重材料在荷载作用下的变形行为对建筑系统至关重要。研究不同载荷水平下的这些脆性和准脆性行为模式在评估机械性能方面具有优势。在本研究中,使用图像分析技术研究了混凝土样品在不同应力-应变区域内发生的变形。实验样品经历了两个小时的弹性极限载荷,以清楚地监测弹性、塑性和断裂点的变形。对于微观结构研究,用环氧树脂制备样品用于图像分析。从每一系列环氧树脂浸渍混凝土试样中取薄片,在显微镜下检查并拍照。采用图像分析方法对数码照片进行了变形研究。结果表明,随着应力和变形的增加,裂纹的形成和类型发生了变化。混凝土内的裂缝形成与荷载方向平行,主要发生在骨料-水泥浆界面。在85%的极限应力下,测得裂纹长度为0.665-29.505 mm,裂纹宽度为0.180-4.128 mm,而在断裂应力下裂纹长度为0.305-32.688 mm,宽度为0.106-2.906 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista de la Construccion
Revista de la Construccion 工程技术-工程:土木
CiteScore
2.30
自引率
21.40%
发文量
0
期刊介绍: The Journal of Construction is aimed at professionals, constructors, academics, researchers, companies, architects, engineers, and anyone who wishes to expand and update their knowledge about construction. We therefore invite all researchers, academics, and professionals to send their contributions for assessment and possible publication in this journal. The publications are free of publication charges. OBJECTIVES The objectives of the Journal of Construction are: 1. To disseminate new knowledge in all areas related to construction (Building, Civil Works, Materials, Business, Education, etc.). 2. To provide professionals in the area with material for discussion to refresh and update their knowledge. 3. To disseminate new applied technologies in construction nationally and internationally. 4. To provide national and foreign academics with an internationally endorsed medium in which to share their knowledge and debate the topics raised.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信