GOE fluctuations for the maximum of the top path in alternating sign matrices

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Arvind Ayyer, S. Chhita, K. Johansson
{"title":"GOE fluctuations for the maximum of the top path in alternating sign matrices","authors":"Arvind Ayyer, S. Chhita, K. Johansson","doi":"10.1215/00127094-2022-0075","DOIUrl":null,"url":null,"abstract":"The six-vertex model is an important toy-model in statistical mechanics for two-dimensional ice with a natural parameter $\\Delta$. When $\\Delta = 0$, the so-called free-fermion point, the model is in natural correspondence with domino tilings of the Aztec diamond. Although this model is integrable for all $\\Delta$, there has been very little progress in understanding its statistics in the scaling limit for other values. In this work, we focus on the six-vertex model with domain wall boundary conditions at $\\Delta = 1/2$, where it corresponds to alternating sign matrices (ASMs). We consider the level lines in a height function representation of ASMs. We show that the maximum of the topmost level line for a uniformly random ASMs has the GOE Tracy--Widom distribution after appropriate rescaling. A key ingredient in our proof is Zeilberger's proof of the ASM conjecture. As far as we know, this is the first edge fluctuation result away from the tangency points for the domain-wall six-vertex model when we are not in the free fermion case.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

The six-vertex model is an important toy-model in statistical mechanics for two-dimensional ice with a natural parameter $\Delta$. When $\Delta = 0$, the so-called free-fermion point, the model is in natural correspondence with domino tilings of the Aztec diamond. Although this model is integrable for all $\Delta$, there has been very little progress in understanding its statistics in the scaling limit for other values. In this work, we focus on the six-vertex model with domain wall boundary conditions at $\Delta = 1/2$, where it corresponds to alternating sign matrices (ASMs). We consider the level lines in a height function representation of ASMs. We show that the maximum of the topmost level line for a uniformly random ASMs has the GOE Tracy--Widom distribution after appropriate rescaling. A key ingredient in our proof is Zeilberger's proof of the ASM conjecture. As far as we know, this is the first edge fluctuation result away from the tangency points for the domain-wall six-vertex model when we are not in the free fermion case.
交替符号矩阵中顶路径最大值的GOE波动
六顶点模型是统计力学中具有自然参数$\Delta$的二维冰的重要模型。当$\Delta = 0$时,即所谓的自由费米子点,该模型与阿兹特克钻石的多米诺骨牌瓷砖自然对应。虽然这个模型对所有$\Delta$都是可积的,但在理解其他值的缩放限制的统计方面进展甚微。在这项工作中,我们专注于具有域壁边界条件为$\Delta = 1/2$的六顶点模型,其中它对应于交替符号矩阵(asm)。我们考虑asm的高度函数表示中的水平线。我们证明了均匀随机asm的最顶层线的最大值在适当的重新缩放后具有GOE Tracy—Widom分布。我们证明的一个关键要素是Zeilberger对ASM猜想的证明。据我们所知,这是非自由费米子情况下域壁六顶点模型第一个远离切点的边涨落结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信