On the Index of Willmore spheres

IF 1.3 1区 数学 Q1 MATHEMATICS
J. Hirsch, E. Mader-Baumdicker
{"title":"On the Index of Willmore spheres","authors":"J. Hirsch, E. Mader-Baumdicker","doi":"10.4310/jdg/1685121319","DOIUrl":null,"url":null,"abstract":"We consider unbranched Willmore surfaces in the Euclidean space that arise as inverted complete minimal surfaces with embedded planar ends. Several statements are proven about upper and lower bounds on the Morse Index - the number of linearly independent variational directions that locally decrease the Willmore energy. We in particular compute the Index of a Willmore sphere in the three-space. This Index is $m-d$, where $m$ is the number of ends of the corresponding complete minimal surface and $d$ is the dimension of the span of the normals at the $m$-fold point. The dimension $d$ is either two or three. For $m=4$ we prove that $d=3$. In general, we show that there is a strong connection of the Morse Index to the number of logarithmically growing Jacobi fields on the corresponding minimal surface.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1685121319","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We consider unbranched Willmore surfaces in the Euclidean space that arise as inverted complete minimal surfaces with embedded planar ends. Several statements are proven about upper and lower bounds on the Morse Index - the number of linearly independent variational directions that locally decrease the Willmore energy. We in particular compute the Index of a Willmore sphere in the three-space. This Index is $m-d$, where $m$ is the number of ends of the corresponding complete minimal surface and $d$ is the dimension of the span of the normals at the $m$-fold point. The dimension $d$ is either two or three. For $m=4$ we prove that $d=3$. In general, we show that there is a strong connection of the Morse Index to the number of logarithmically growing Jacobi fields on the corresponding minimal surface.
关于Willmore球的指数
我们考虑欧几里得空间中的无分支Willmore曲面,这些曲面是具有嵌入平面末端的反向完全极小曲面。关于Morse指数的上界和下界,已经证明了几种说法。Morse指数是局部降低Willmore能量的线性独立变分方向的数量。我们特别计算了Willmore球体在三个空间中的指数。该索引为$m-d$,其中$m$是相应完整最小曲面的末端数量,$d$是$m$折叠点处法线跨度的维度。维度$d$是两个或三个。对于$m=4$,我们证明$d=3$。通常,我们证明了Morse指数与相应最小曲面上对数增长的Jacobi场的数量之间存在强联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信