The endomorphism ring of projectives and the Bernstein centre

IF 0.3 4区 数学 Q4 MATHEMATICS
A. Pyvovarov
{"title":"The endomorphism ring of projectives and the Bernstein centre","authors":"A. Pyvovarov","doi":"10.5802/jtnb.1111","DOIUrl":null,"url":null,"abstract":"Let $F$ be a local non-archimedean field and $\\mathcal{O}_F$ its ring of integers. Let $\\Omega$ be a Bernstein component of the category of smooth representations of $GL_n(F)$, let $(J, \\lambda)$ be a Bushnell-Kutzko $\\Omega$-type, and let $\\mathfrak{Z}_{\\Omega}$ be the centre of the Bernstein component $\\Omega$. This paper contains two major results. Let $\\sigma$ be a direct summand of $\\mathrm{Ind}_J^{GL_n(\\mathcal{O}_F)} \\lambda$. We will begin by computing $\\mathrm{c\\text{--} Ind}_{GL_n(\\mathcal{O}_F)}^{GL_n(F)} \\sigma\\otimes_{\\mathfrak{Z}_{\\Omega}}\\kappa(\\mathfrak{m})$, where $\\kappa(\\mathfrak{m})$ is the residue field at maximal ideal $\\mathfrak{m}$ of $\\mathfrak{Z}_{\\Omega}$, and the maximal ideal $\\mathfrak{m}$ belongs to a Zariski-dense set in $\\mathrm{Spec}\\: \\mathfrak{Z}_{\\Omega}$. This result allows us to deduce that the endomorphism ring $\\mathrm{End}_{GL_n(F)}(\\mathrm{c\\text{--} Ind}_{GL_n(\\mathcal{O}_F)}^{GL_n(F)} \\sigma)$ is isomorphic to $\\mathfrak{Z}_{\\Omega}$, when $\\sigma$ appears with multiplicity one in $\\mathrm{Ind}_J^{GL_n(\\mathcal{O}_F)} \\lambda$.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1111","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Let $F$ be a local non-archimedean field and $\mathcal{O}_F$ its ring of integers. Let $\Omega$ be a Bernstein component of the category of smooth representations of $GL_n(F)$, let $(J, \lambda)$ be a Bushnell-Kutzko $\Omega$-type, and let $\mathfrak{Z}_{\Omega}$ be the centre of the Bernstein component $\Omega$. This paper contains two major results. Let $\sigma$ be a direct summand of $\mathrm{Ind}_J^{GL_n(\mathcal{O}_F)} \lambda$. We will begin by computing $\mathrm{c\text{--} Ind}_{GL_n(\mathcal{O}_F)}^{GL_n(F)} \sigma\otimes_{\mathfrak{Z}_{\Omega}}\kappa(\mathfrak{m})$, where $\kappa(\mathfrak{m})$ is the residue field at maximal ideal $\mathfrak{m}$ of $\mathfrak{Z}_{\Omega}$, and the maximal ideal $\mathfrak{m}$ belongs to a Zariski-dense set in $\mathrm{Spec}\: \mathfrak{Z}_{\Omega}$. This result allows us to deduce that the endomorphism ring $\mathrm{End}_{GL_n(F)}(\mathrm{c\text{--} Ind}_{GL_n(\mathcal{O}_F)}^{GL_n(F)} \sigma)$ is isomorphic to $\mathfrak{Z}_{\Omega}$, when $\sigma$ appears with multiplicity one in $\mathrm{Ind}_J^{GL_n(\mathcal{O}_F)} \lambda$.
投影子的自同态环与Bernstein中心
让$F$是本地非阿基米德域,并且$\mathcal{O}_F$的整数环。设$\Omega$是$GL_n(F)$的光滑表示范畴的Bernstein分量,设$(J,\lambda)$是Bushnell-Kutzko$\Omega$类型,设$\mathfrak{Z}_{\Omega}$是Bernstein组件$\Omega$的中心。本文包含两个主要结果。设$\sigma$是$\mathrm的直接和{Ind}_J^{GL_n(\mathcal{O}_F)}\lambda$。我们将从计算$\mathrm{c\text{--}Ind}_{GL_n(\mathcal{O}_F)}^{GL_n(F)}\sigma\otimes_{\mathfrak{Z}_{\Omega}}\kappa(\mathfrak{m})$,其中$\akappa{Z}_{\Omega}$,并且最大理想$\mathfrak{m}$属于$\mathrm{Spec}\中的Zariski稠密集{Z}_{\Omega}$。这个结果使我们能够推断自同态环$\mathrm{End}_{GL_n(F)}(\mathrm{c\text{--}Ind}_{O}_F)}^{GL_n(F)}\sigma)$同构于$\mathfrak{Z}_{\Omega}$,当$\sigma$以多重数1出现在$\mathrm中时{Ind}_J^{GL_n(\mathcal{O}_F)}\lambda$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信