On generalized Steinberg theory for type AIII

Q3 Mathematics
Lucas Fresse, Kyo Nishiyama
{"title":"On generalized Steinberg theory for type AIII","authors":"Lucas Fresse, Kyo Nishiyama","doi":"10.5802/alco.245","DOIUrl":null,"url":null,"abstract":"Given a symmetric pair $(G,K)=(\\mathrm{GL}_{p+q}(\\mathbb{C}),\\mathrm{GL}_{p}(\\mathbb{C})\\times \\mathrm{GL}_{q}(\\mathbb{C}))$ of type AIII, we consider the diagonal action of $K$ on the double flag variety $\\mathfrak{X}=\\mathrm{Grass}(\\mathbb{C}^{p+q},r)\\times K/B_K$ whose first factor is a Grassmann variety for $G$ and whose second factor is a full flag variety of $K$. There is a finite number of orbits for this action, and our first result is a description of these orbits: parametrization, dimensions, closure relations, and cover relations. Specifically, the orbits are parametrized by certain pairs of partial permutations. Each orbit in $\\mathfrak{X}$ gives rise to a conormal bundle. As in the references [5] and [6], by using the moment map associated to the action, we define a so-called symmetrized Steinberg map, respectively an exotic Steinberg map, which assigns to each such conormal bundle (thus to each orbit) a nilpotent orbit in the Lie algebra of $K$, respectively in the Cartan complement of that Lie algebra. Our main result is an explicit description of these Steinberg maps in terms of combinatorial algorithms on partial permutations, extending the classical Robinson--Schensted procedure on permutations. This is a thorough generalization of the results in [5], where we supposed $p=q=r$ and considered orbits of special forms.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

Given a symmetric pair $(G,K)=(\mathrm{GL}_{p+q}(\mathbb{C}),\mathrm{GL}_{p}(\mathbb{C})\times \mathrm{GL}_{q}(\mathbb{C}))$ of type AIII, we consider the diagonal action of $K$ on the double flag variety $\mathfrak{X}=\mathrm{Grass}(\mathbb{C}^{p+q},r)\times K/B_K$ whose first factor is a Grassmann variety for $G$ and whose second factor is a full flag variety of $K$. There is a finite number of orbits for this action, and our first result is a description of these orbits: parametrization, dimensions, closure relations, and cover relations. Specifically, the orbits are parametrized by certain pairs of partial permutations. Each orbit in $\mathfrak{X}$ gives rise to a conormal bundle. As in the references [5] and [6], by using the moment map associated to the action, we define a so-called symmetrized Steinberg map, respectively an exotic Steinberg map, which assigns to each such conormal bundle (thus to each orbit) a nilpotent orbit in the Lie algebra of $K$, respectively in the Cartan complement of that Lie algebra. Our main result is an explicit description of these Steinberg maps in terms of combinatorial algorithms on partial permutations, extending the classical Robinson--Schensted procedure on permutations. This is a thorough generalization of the results in [5], where we supposed $p=q=r$ and considered orbits of special forms.
关于AIII型的广义Steinberg理论
给定对称对$(G,K)=(\mathrm{GL}_{p+q}(\mathbb{C}),\mathrm{GL}_{p} (\mathbb{C})\times\mathrm{GL}_{q} (\mathbb{C}))$,我们考虑$K$在双旗变种$\mathfrak{X}=\mathrm{Grass}(\mathbb{C}^{p+q},r)\times K/B_K$上的对角作用,其第一因子是$G$的Grassmann变种,其第二因子是$K$的全旗变种。这个作用有有限个轨道,我们的第一个结果是对这些轨道的描述:参数化、维度、闭包关系和覆盖关系。具体来说,轨道是通过某些部分排列对进行参数化的。$\mathfrak{X}$中的每个轨道都会产生一个正态丛。如参考文献[5]和[6]中所述,通过使用与作用相关的矩映射,我们分别定义了一个所谓的对称斯坦伯格映射,即奇异斯坦伯格映射。该映射在李代数的Cartan补中分别为$K$的李代数中的每个共形丛(从而为每个轨道)分配了一个幂零轨道。我们的主要结果是用部分置换的组合算法对这些Steinberg映射进行了显式描述,扩展了经典的Robinson-Schensted置换过程。这是对[5]中结果的彻底推广,其中我们假设$p=q=r$,并考虑特殊形式的轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信