{"title":"The Worst Case Finite Optimal Value in Interval Linear Programming","authors":"M. Hladík","doi":"10.17535/CRORR.2018.0019","DOIUrl":null,"url":null,"abstract":"We consider a linear programming problem, in which possibly all coefficients are subject to uncertainty in the form of deterministic intervals. The problem of computing the worst case optimal value has already been thoroughly investigated in the past. Notice that it might happen that the value can be infinite due to infeasibility of some instances. This is a serious drawback if we know a priori that all instances should be feasible. Therefore we focus on the feasible instances only and study the problem of computing the worst case finite optimal value. We present a characterization for the general case and investigate special cases, too. We show that the problem is easy to solve provided interval uncertainty affects the objective function only, but the problem becomes intractable in case of intervals in the righthand side of the constraints. We also propose a finite reduction based on inspecting candidate bases. We show that processing a given basis is still an NP-hard problem even with non-interval constraint matrix, however, the problem becomes tractable as long as uncertain coefficients are situated either in the objective function or in the right-hand side only.","PeriodicalId":44065,"journal":{"name":"Croatian Operational Research Review","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17535/CRORR.2018.0019","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Operational Research Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17535/CRORR.2018.0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 5
Abstract
We consider a linear programming problem, in which possibly all coefficients are subject to uncertainty in the form of deterministic intervals. The problem of computing the worst case optimal value has already been thoroughly investigated in the past. Notice that it might happen that the value can be infinite due to infeasibility of some instances. This is a serious drawback if we know a priori that all instances should be feasible. Therefore we focus on the feasible instances only and study the problem of computing the worst case finite optimal value. We present a characterization for the general case and investigate special cases, too. We show that the problem is easy to solve provided interval uncertainty affects the objective function only, but the problem becomes intractable in case of intervals in the righthand side of the constraints. We also propose a finite reduction based on inspecting candidate bases. We show that processing a given basis is still an NP-hard problem even with non-interval constraint matrix, however, the problem becomes tractable as long as uncertain coefficients are situated either in the objective function or in the right-hand side only.
期刊介绍:
Croatian Operational Research Review (CRORR) is the journal which publishes original scientific papers from the area of operational research. The purpose is to publish papers from various aspects of operational research (OR) with the aim of presenting scientific ideas that will contribute both to theoretical development and practical application of OR. The scope of the journal covers the following subject areas: linear and non-linear programming, integer programing, combinatorial and discrete optimization, multi-objective programming, stohastic models and optimization, scheduling, macroeconomics, economic theory, game theory, statistics and econometrics, marketing and data analysis, information and decision support systems, banking, finance, insurance, environment, energy, health, neural networks and fuzzy systems, control theory, simulation, practical OR and applications. The audience includes both researchers and practitioners from the area of operations research, applied mathematics, statistics, econometrics, intelligent methods, simulation, and other areas included in the above list of topics. The journal has an international board of editors, consisting of more than 30 editors – university professors from Croatia, Slovenia, USA, Italy, Germany, Austria and other coutries.