Optimal orientations of Vertex-multiplications of Trees with Diameter 4

Q4 Mathematics
W. Wong, E. G. Tay
{"title":"Optimal orientations of Vertex-multiplications of Trees with Diameter 4","authors":"W. Wong, E. G. Tay","doi":"10.20429/tag.2023.10106","DOIUrl":null,"url":null,"abstract":"Koh and Tay proved a fundamental classification of $G$ vertex-multiplications into three classes $\\mathscr{C}_0, \\mathscr{C}_1$ and $\\mathscr{C}_2$. They also showed that any vertex-multiplication of a tree with diameter at least 3 does not belong to the class $\\mathscr{C}_2$. Of interest, $G$ vertex-multiplications are extensions of complete $n$-partite graphs and Gutin characterised complete bipartite graphs with an ingenious use of Sperner's Theorem. In this paper, we investigate vertex-multiplications of trees with diameter $4$ in $\\mathscr{C}_0$ (or $\\mathscr{C}_1$) and exhibit its intricate connections with problems in Sperner Theory, thereby extending Gutin's approach. Let $s$ denote the vertex-multiplication of the central vertex. We almost completely characterise the case of even $s$ and give a complete characterisation for the case of odd $s\\ge 3$.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2023.10106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Koh and Tay proved a fundamental classification of $G$ vertex-multiplications into three classes $\mathscr{C}_0, \mathscr{C}_1$ and $\mathscr{C}_2$. They also showed that any vertex-multiplication of a tree with diameter at least 3 does not belong to the class $\mathscr{C}_2$. Of interest, $G$ vertex-multiplications are extensions of complete $n$-partite graphs and Gutin characterised complete bipartite graphs with an ingenious use of Sperner's Theorem. In this paper, we investigate vertex-multiplications of trees with diameter $4$ in $\mathscr{C}_0$ (or $\mathscr{C}_1$) and exhibit its intricate connections with problems in Sperner Theory, thereby extending Gutin's approach. Let $s$ denote the vertex-multiplication of the central vertex. We almost completely characterise the case of even $s$ and give a complete characterisation for the case of odd $s\ge 3$.
直径为4的树的顶点乘法的最优方向
Koh和Tay证明了$G$顶点乘法的基本分类:$\mathscr{C}_0, $ mathscr{C}_1$和$\mathscr{C}_2$。他们还证明了任何直径至少为3的树的顶点乘法都不属于类$\mathscr{C}_2$。有趣的是,$G$顶点乘法是完全$n$-部图的扩展,Gutin巧妙地使用了Sperner's定理来表征完全二部图。本文研究了$\mathscr{C}_0$(或$\mathscr{C}_1$)中直径$4$的树的顶点乘法,并展示了其与Sperner理论问题的复杂联系,从而扩展了Gutin的方法。设$s$表示中心顶点的顶点乘法。我们几乎完全刻画了偶数$s$的情况,并给出了奇数$s$ $的完全刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory and Applications of Graphs
Theory and Applications of Graphs Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.70
自引率
0.00%
发文量
17
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信