How does soil carbon sequestration affect greenhouse gas emissions from a sheep farming system? Results of a life cycle assessment case study

IF 2.6 3区 农林科学 Q1 AGRONOMY
P. Arca, E. Vagnoni, P. Duce, A. Franca
{"title":"How does soil carbon sequestration affect greenhouse gas emissions from a sheep farming system? Results of a life cycle assessment case study","authors":"P. Arca, E. Vagnoni, P. Duce, A. Franca","doi":"10.4081/IJA.2021.1789","DOIUrl":null,"url":null,"abstract":"A life cycle assessment (LCA) study of a transition from semi-intensive to semi-extensive Mediterranean dairy sheep farm suggests that the latter has a strong potential for offsetting greenhouse gas (GHG) emissions through the soil C sequestration (Cseq) in permanent grasslands. The extensification process shows clear environmental advantage when emission intensity is referred to the area-based functional unit (FU). Several LCA studies reported that extensive livestock systems have greater GHG emissions per mass of product than intensive one, due to their lower productivity. However, these studies did not account for soil Cseq of temporary and permanent grasslands, that have a strong potential to partly mitigate the GHG balance of ruminant production systems. Our LCA study was carried out considering the transition from a semi-intensive (SI) towards a semi-extensive (SE) production system, adopted in a dairy sheep farm located in North-Western Sardinia (Italy). Impact scope included enteric methane emissions, feed production, on-farm energy use and transportation, infrastructures as well as the potential C sink arising from soil Cseq with respect to the emission intensity. In order to provide a more comprehensive analysis, we used the following FUs: 1 kg of fat and protein corrected milk (FPCM) and 1 ha of utilised agricultural area (UAA). We observed that the extensification of production system determined contrasting environmental effects when using different FUs accounting for soil Cseq. When soil Cseq in emission intensity estimate was included, we Ac ce pt ed p ap er","PeriodicalId":14618,"journal":{"name":"Italian Journal of Agronomy","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4081/IJA.2021.1789","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 4

Abstract

A life cycle assessment (LCA) study of a transition from semi-intensive to semi-extensive Mediterranean dairy sheep farm suggests that the latter has a strong potential for offsetting greenhouse gas (GHG) emissions through the soil C sequestration (Cseq) in permanent grasslands. The extensification process shows clear environmental advantage when emission intensity is referred to the area-based functional unit (FU). Several LCA studies reported that extensive livestock systems have greater GHG emissions per mass of product than intensive one, due to their lower productivity. However, these studies did not account for soil Cseq of temporary and permanent grasslands, that have a strong potential to partly mitigate the GHG balance of ruminant production systems. Our LCA study was carried out considering the transition from a semi-intensive (SI) towards a semi-extensive (SE) production system, adopted in a dairy sheep farm located in North-Western Sardinia (Italy). Impact scope included enteric methane emissions, feed production, on-farm energy use and transportation, infrastructures as well as the potential C sink arising from soil Cseq with respect to the emission intensity. In order to provide a more comprehensive analysis, we used the following FUs: 1 kg of fat and protein corrected milk (FPCM) and 1 ha of utilised agricultural area (UAA). We observed that the extensification of production system determined contrasting environmental effects when using different FUs accounting for soil Cseq. When soil Cseq in emission intensity estimate was included, we Ac ce pt ed p ap er
土壤碳固存如何影响牧羊系统的温室气体排放?生命周期评估案例研究的结果
一项关于从半集约化到半粗放化的地中海奶羊养殖场的生命周期评估(LCA)研究表明,后者具有通过永久草原的土壤碳封存(Cseq)抵消温室气体(GHG)排放的强大潜力。当以区域功能单元(FU)为单位计算排放强度时,扩展过程具有明显的环境优势。几项LCA研究报告称,由于生产率较低,粗放型畜牧业系统的每质量产品温室气体排放量高于集约型畜牧业系统。然而,这些研究没有考虑到临时和永久草地的土壤碳排放量,这些土壤碳排放量在一定程度上有可能缓解反刍动物生产系统的温室气体平衡。我们的LCA研究是在考虑从半集约化(SI)向半粗放化(SE)生产系统过渡的情况下进行的,该研究采用了位于撒丁岛西北部(意大利)的一个奶羊场。影响范围包括肠道甲烷排放、饲料生产、农场能源使用和运输、基础设施以及与排放强度相关的土壤碳排放产生的潜在碳汇。为了提供更全面的分析,我们使用了以下单位:1千克脂肪和蛋白质校正乳(FPCM)和1公顷利用农业面积(UAA)。我们观察到,当使用不同的FUs计算土壤Cseq时,生产系统的扩展决定了不同的环境效应。当考虑排放强度估算中的土壤碳排放时,我们认为这是一种有效的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
4.50%
发文量
25
审稿时长
10 weeks
期刊介绍: The Italian Journal of Agronomy (IJA) is the official journal of the Italian Society for Agronomy. It publishes quarterly original articles and reviews reporting experimental and theoretical contributions to agronomy and crop science, with main emphasis on original articles from Italy and countries having similar agricultural conditions. The journal deals with all aspects of Agricultural and Environmental Sciences, the interactions between cropping systems and sustainable development. Multidisciplinary articles that bridge agronomy with ecology, environmental and social sciences are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信