Geometric characterization of the persistence of 1D maps.

Ranita Biswas, Sebastiano Cultrera di Montesano, Herbert Edelsbrunner, Morteza Saghafian
{"title":"Geometric characterization of the persistence of 1D maps.","authors":"Ranita Biswas, Sebastiano Cultrera di Montesano, Herbert Edelsbrunner, Morteza Saghafian","doi":"10.1007/s41468-023-00126-9","DOIUrl":null,"url":null,"abstract":"<p><p>We characterize critical points of 1-dimensional maps paired in persistent homology geometrically and this way get elementary proofs of theorems about the symmetry of persistence diagrams and the variation of such maps. In particular, we identify branching points and endpoints of networks as the sole source of asymmetry and relate the cycle basis in persistent homology with a version of the stable marriage problem. Our analysis provides the foundations of fast algorithms for maintaining a collection of sorted lists together with its persistence diagram.</p>","PeriodicalId":73600,"journal":{"name":"Journal of applied and computational topology","volume":" ","pages":"1101-1119"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639680/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied and computational topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41468-023-00126-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize critical points of 1-dimensional maps paired in persistent homology geometrically and this way get elementary proofs of theorems about the symmetry of persistence diagrams and the variation of such maps. In particular, we identify branching points and endpoints of networks as the sole source of asymmetry and relate the cycle basis in persistent homology with a version of the stable marriage problem. Our analysis provides the foundations of fast algorithms for maintaining a collection of sorted lists together with its persistence diagram.

一维地图持久性的几何表征
本文用几何方法刻画了在持久同调中配对的一维映射的临界点,从而得到了关于持久图对称性定理和这种映射的变异定理的初等证明。特别是,我们确定分支点和网络端点作为不对称的唯一来源,并将持续同源的循环基与稳定婚姻问题的一个版本联系起来。我们的分析为维护排序列表集合及其持久性图提供了快速算法的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信