Advances in graphene reinforced metal matrix nanocomposites: Mechanisms, processing, modelling, properties and applications

Wenge Chen , Tao Yang , Longlong Dong , Ahmed Elmasry , Jiulong Song , Nan Deng , Ahmed Elmarakbi , Terence Liu , Hai Bao Lv , Yong Qing Fu
{"title":"Advances in graphene reinforced metal matrix nanocomposites: Mechanisms, processing, modelling, properties and applications","authors":"Wenge Chen ,&nbsp;Tao Yang ,&nbsp;Longlong Dong ,&nbsp;Ahmed Elmasry ,&nbsp;Jiulong Song ,&nbsp;Nan Deng ,&nbsp;Ahmed Elmarakbi ,&nbsp;Terence Liu ,&nbsp;Hai Bao Lv ,&nbsp;Yong Qing Fu","doi":"10.1016/j.npe.2020.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene has been extensively explored to enhance functional and mechanical properties of metal matrix nanocomposites for wide-range applications due to their superior mechanical, electrical and thermal properties. This article discusses recent advances of key mechanisms, synthesis, manufacture, modelling and applications of graphene metal matrix nanocomposites. The main strengthening mechanisms include load transfer, Orowan cycle, thermal mismatch, and refinement strengthening. Synthesis technologies are discussed including some conventional methods (such as liquid metallurgy, powder metallurgy, thermal spraying and deposition technology) and some advanced processing methods (such as molecular-level mixing and friction stir processing). Analytical modelling (including phenomenological models, semi-empirical models, homogenization models, and self-consistent model) and numerical simulations (including finite elements method, finite difference method, and boundary element method) have been discussed for understanding the interface bonding and performance characteristics between graphene and different metal matrices (Al, Cu, Mg, Ni). Key challenges in applying graphene as a reinforcing component for the metal matrix composites and the potential solutions as well as prospectives of future development and opportunities are highlighted.</p></div>","PeriodicalId":87330,"journal":{"name":"Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589554020300416/pdfft?md5=999c2840e0051d104302fd796db39582&pid=1-s2.0-S2589554020300416-main.pdf","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology and Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589554020300416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Graphene has been extensively explored to enhance functional and mechanical properties of metal matrix nanocomposites for wide-range applications due to their superior mechanical, electrical and thermal properties. This article discusses recent advances of key mechanisms, synthesis, manufacture, modelling and applications of graphene metal matrix nanocomposites. The main strengthening mechanisms include load transfer, Orowan cycle, thermal mismatch, and refinement strengthening. Synthesis technologies are discussed including some conventional methods (such as liquid metallurgy, powder metallurgy, thermal spraying and deposition technology) and some advanced processing methods (such as molecular-level mixing and friction stir processing). Analytical modelling (including phenomenological models, semi-empirical models, homogenization models, and self-consistent model) and numerical simulations (including finite elements method, finite difference method, and boundary element method) have been discussed for understanding the interface bonding and performance characteristics between graphene and different metal matrices (Al, Cu, Mg, Ni). Key challenges in applying graphene as a reinforcing component for the metal matrix composites and the potential solutions as well as prospectives of future development and opportunities are highlighted.

石墨烯增强金属基纳米复合材料的研究进展:机理、加工、建模、性能和应用
石墨烯由于其优异的机械、电学和热学性能,被广泛用于增强金属基纳米复合材料的功能和机械性能。本文讨论了石墨烯金属基纳米复合材料的关键机理、合成、制造、建模和应用等方面的最新进展。主要强化机制包括载荷传递、Orowan循环、热失配和细化强化。讨论了合成技术,包括一些常规方法(如液体冶金、粉末冶金、热喷涂和沉积技术)和一些先进的加工方法(如分子级混合和摩擦搅拌工艺)。分析模型(包括现象学模型、半经验模型、均质模型和自一致模型)和数值模拟(包括有限元法、有限差分法和边界元法)已被讨论,以了解石墨烯与不同金属基体(Al、Cu、Mg、Ni)之间的界面键合和性能特征。重点介绍了石墨烯作为金属基复合材料的增强材料所面临的主要挑战、潜在的解决方案以及未来的发展前景和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信