{"title":"Greener Approaches towards 1,4–Benzothiazine Synthesis: Recent Updates and Outlook","authors":"B. Basu, Suchandra Bhattacharya","doi":"10.2174/2213337210666230213144211","DOIUrl":null,"url":null,"abstract":"\n\nHeterocyclic moieties are ubiquitous in nature and the exploration of heterocyclic chemistry goes centuries back , which have coalesced into the invention of greener methodologies towards the synthesis of heterocycles of potential uses. Benzothiazine is an important class of heterocyclic molecule, in which a benzene ring is fused with a six–member N, S containing ring. Amongst the three possible isomers, 1,4–benzothiazines show a wide spectrum of pharmaceutical and biological activities like anti–inflammatory, anti–rheumatic, antihypertensive, andantipathogenic roles. In search of greener protocols,metal–free catalysts, and environmentally benign reaction conditions, a lot have been unboxed to date, and many other dimensions remain yet to be deciphered. This minireview is an attempt to classify various sustainable protocols for the synthesis of 1,4–benzothiazine scaffolds over the last decade based on the reacting components and pathways, along with the consideration of plausible mechanistic insights and critical analysis.\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337210666230213144211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Heterocyclic moieties are ubiquitous in nature and the exploration of heterocyclic chemistry goes centuries back , which have coalesced into the invention of greener methodologies towards the synthesis of heterocycles of potential uses. Benzothiazine is an important class of heterocyclic molecule, in which a benzene ring is fused with a six–member N, S containing ring. Amongst the three possible isomers, 1,4–benzothiazines show a wide spectrum of pharmaceutical and biological activities like anti–inflammatory, anti–rheumatic, antihypertensive, andantipathogenic roles. In search of greener protocols,metal–free catalysts, and environmentally benign reaction conditions, a lot have been unboxed to date, and many other dimensions remain yet to be deciphered. This minireview is an attempt to classify various sustainable protocols for the synthesis of 1,4–benzothiazine scaffolds over the last decade based on the reacting components and pathways, along with the consideration of plausible mechanistic insights and critical analysis.
期刊介绍:
Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.