Partition and analytic rank are equivalent over large fields

IF 2.3 1区 数学 Q1 MATHEMATICS
A. Cohen, Guy Moshkovitz
{"title":"Partition and analytic rank are equivalent over large fields","authors":"A. Cohen, Guy Moshkovitz","doi":"10.1215/00127094-2022-0086","DOIUrl":null,"url":null,"abstract":"We prove that the partition rank and the analytic rank of tensors are equal up to a constant, over finite fields of any characteristic and any large enough cardinality depending on the analytic rank. Moreover, we show that a plausible improvement of our field cardinality requirement would imply that the ranks are equal up to 1+o(1) in the exponent over every finite field. At the core of the proof is a technique for lifting decompositions of multilinear polynomials in an open subset of an algebraic variety, and a technique for finding a large subvariety that retains all rational points such that at least one of these points satisfies a finite-field analogue of genericity with respect to it. Proving the equivalence between these two ranks, ideally over fixed finite fields, is a central question in additive combinatorics, and was reiterated by multiple authors. As a corollary we prove, allowing the field to depend on the value of the norm, the Polynomial Gowers Inverse Conjecture in the d vs. d-1 case.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0086","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

We prove that the partition rank and the analytic rank of tensors are equal up to a constant, over finite fields of any characteristic and any large enough cardinality depending on the analytic rank. Moreover, we show that a plausible improvement of our field cardinality requirement would imply that the ranks are equal up to 1+o(1) in the exponent over every finite field. At the core of the proof is a technique for lifting decompositions of multilinear polynomials in an open subset of an algebraic variety, and a technique for finding a large subvariety that retains all rational points such that at least one of these points satisfies a finite-field analogue of genericity with respect to it. Proving the equivalence between these two ranks, ideally over fixed finite fields, is a central question in additive combinatorics, and was reiterated by multiple authors. As a corollary we prove, allowing the field to depend on the value of the norm, the Polynomial Gowers Inverse Conjecture in the d vs. d-1 case.
划分和分析秩在大域上是等价的
证明了张量的划分秩和解析秩在任意特征和依赖于解析秩的足够大基数的有限域上等于一个常数。此外,我们表明,我们的字段基数要求的合理改进将意味着在每个有限域的指数中,排名等于1+o(1)。证明的核心是一种在代数变量的开放子集中提升多元线性多项式分解的技术,以及一种寻找保留所有有理点的大子变量的技术,使得这些点中至少有一个满足有限域的一般性模拟。证明这两个秩之间的等价,理想地在固定有限域上,是加性组合学中的一个中心问题,并且被许多作者重申。作为一个推论,我们证明了在d与d-1情况下,允许域依赖于范数的值的多项式高尔斯逆猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信