Estimation of Realized Asymmetric Stochastic Volatility Models Using Kalman Filter

IF 1.1 Q3 ECONOMICS
Manabu Asai
{"title":"Estimation of Realized Asymmetric Stochastic Volatility Models Using Kalman Filter","authors":"Manabu Asai","doi":"10.3390/econometrics11030018","DOIUrl":null,"url":null,"abstract":"Despite the growing interest in realized stochastic volatility models, their estimation techniques, such as simulated maximum likelihood (SML), are computationally intensive. Based on the realized volatility equation, this study demonstrates that, in a finite sample, the quasi-maximum likelihood estimator based on the Kalman filter is competitive with the two-step SML estimator, which is less efficient than the SML estimator. Regarding empirical results for the S&P 500 index, the quasi-likelihood ratio tests favored the two-factor realized asymmetric stochastic volatility model with the standardized t distribution among alternative specifications, and an analysis on out-of-sample forecasts prefers the realized stochastic volatility models, rejecting the model without the realized volatility measure. Furthermore, the forecasts of alternative RSV models are statistically equivalent for the data covering the global financial crisis.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics11030018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the growing interest in realized stochastic volatility models, their estimation techniques, such as simulated maximum likelihood (SML), are computationally intensive. Based on the realized volatility equation, this study demonstrates that, in a finite sample, the quasi-maximum likelihood estimator based on the Kalman filter is competitive with the two-step SML estimator, which is less efficient than the SML estimator. Regarding empirical results for the S&P 500 index, the quasi-likelihood ratio tests favored the two-factor realized asymmetric stochastic volatility model with the standardized t distribution among alternative specifications, and an analysis on out-of-sample forecasts prefers the realized stochastic volatility models, rejecting the model without the realized volatility measure. Furthermore, the forecasts of alternative RSV models are statistically equivalent for the data covering the global financial crisis.
用卡尔曼滤波估计已实现的非对称随机波动模型
尽管人们对已实现的随机波动率模型越来越感兴趣,但它们的估计技术,如模拟最大似然(SML),是计算密集型的。基于已实现的波动率方程,本研究证明,在有限样本中,基于卡尔曼滤波器的拟最大似然估计器与两步SML估计器具有竞争性,后者的效率低于SML估计量。关于标准普尔500指数的实证结果,准似然比检验倾向于替代规范中具有标准化t分布的双因素实现的不对称随机波动率模型,而对样本外预测的分析更倾向于实现的随机波动性模型,拒绝了没有实现波动性测度的模型。此外,替代呼吸道合胞病毒模型的预测在统计上与涵盖全球金融危机的数据相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信