DEGREE SUM ENERGY OF NON-COMMUTING GRAPH FOR DIHEDRAL GROUPS

Q3 Multidisciplinary
M. U. Romdhini, A. Nawawi
{"title":"DEGREE SUM ENERGY OF NON-COMMUTING GRAPH FOR DIHEDRAL GROUPS","authors":"M. U. Romdhini, A. Nawawi","doi":"10.22452/mjs.sp2022no1.5","DOIUrl":null,"url":null,"abstract":"For a finite group G, let Z(G) be the centre of G. Then the non-commuting graph on G, denoted by ΓG, has G\\Z(G) as its vertex set with two distinct vertices vp and vq joined by an edge whenever vpvq ≠ vqvp. The degree sum matrix of a graph is a square matrix whose (p,q)-th entry is dvp + dvq whenever p is different from q, otherwise, it is zero, where dvi is the degree of the vertex vi. This study presents the general formula for the degree sum energy, EDS (ΓG), for the non-commuting graph of dihedral groups of order 2n, D2n, for all n ≥ 3.","PeriodicalId":18094,"journal":{"name":"Malaysian journal of science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22452/mjs.sp2022no1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 2

Abstract

For a finite group G, let Z(G) be the centre of G. Then the non-commuting graph on G, denoted by ΓG, has G\Z(G) as its vertex set with two distinct vertices vp and vq joined by an edge whenever vpvq ≠ vqvp. The degree sum matrix of a graph is a square matrix whose (p,q)-th entry is dvp + dvq whenever p is different from q, otherwise, it is zero, where dvi is the degree of the vertex vi. This study presents the general formula for the degree sum energy, EDS (ΓG), for the non-commuting graph of dihedral groups of order 2n, D2n, for all n ≥ 3.
二面体群的非通图的度和能量
对于有限群G,设Z(G)是G的中心。则G上的非交换图,用ΓG表示,以G\Z(G,当vpvq≠vqvp时,两个不同的顶点vp和vq通过边连接为其顶点集。图的度和矩阵是一个平方矩阵,当p与q不同时,其第(p,q)项为dvp+dvq,否则为零,其中dvi是顶点vi的度。本文给出了2n,D2n阶二面体群的非交换图的度总和能量EDS(ΓG)的通式,对于所有n≥3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Malaysian journal of science
Malaysian journal of science Multidisciplinary-Multidisciplinary
CiteScore
1.10
自引率
0.00%
发文量
36
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信