Subbalancing Numbers

IF 0.3 Q4 MATHEMATICS
R. K. Davala, G. Panda
{"title":"Subbalancing Numbers","authors":"R. K. Davala, G. Panda","doi":"10.11113/matematika.v34.n1.829","DOIUrl":null,"url":null,"abstract":"A natural number $n$ is called balancing number (with balancer $r$)if it satisfies the Diophantine equation $1+2+\\cdots+(n-1)=(n+1)+(n+2)+\\cdots+(n+r).$ However, if for some pair of natural numbers $(n,r)$, $1+2+\\cdots+(n-1) < (n+1)+(n+2)+\\cdots+(n+r)$ and equality is achieved after adding a natural number $D$ to the left hand side then we call $n$ a $D$-subbalancing number with $D$-subbalaner number $r$. In this paper, such numbers are studied for certain values of $D$.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/matematika.v34.n1.829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

A natural number $n$ is called balancing number (with balancer $r$)if it satisfies the Diophantine equation $1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r).$ However, if for some pair of natural numbers $(n,r)$, $1+2+\cdots+(n-1) < (n+1)+(n+2)+\cdots+(n+r)$ and equality is achieved after adding a natural number $D$ to the left hand side then we call $n$ a $D$-subbalancing number with $D$-subbalaner number $r$. In this paper, such numbers are studied for certain values of $D$.
子平衡数
如果自然数$n$满足丢番图方程$1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r),则称其为平衡数(带平衡器$r$)$然而,如果对于某对自然数$(n,r)$,$1+2+\cdots+(n-1)<(n+1)+(n+2)+\cdots+(n+r)$,并且在将自然数$D$添加到左手边后实现相等,则我们将$n$称为$D$子平衡数,其中$D$为子平衡数$r$。在本文中,对于$D$的某些值,研究了这样的数字。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信