ALGILAMA VE ELEKTRİK BAĞLANTISI İÇİN TEKSTİL ÜZERİNE ESNEK İLETKEN POLİMERLERİN 3D BASKISI

Q4 Engineering
Eva Monteiro, Helder Carvalho, Ana Maria Rocha, Derya TAMA BİRKOCAK, Helder Puga
{"title":"ALGILAMA VE ELEKTRİK BAĞLANTISI İÇİN TEKSTİL ÜZERİNE ESNEK İLETKEN POLİMERLERİN 3D BASKISI","authors":"Eva Monteiro, Helder Carvalho, Ana Maria Rocha, Derya TAMA BİRKOCAK, Helder Puga","doi":"10.7216/teksmuh.1222553","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) is a 3D printing technology that works by deposition of a material, layer by layer, creating 3D objects. The growth of these technologies has been exponential and the application of AM in the textile industry has also been a subject of increased interest in the past few years. The applications are not only for decorative purposes, but also for biomedical and other uses in e-textiles. However, a crucial point for making such assembly is the adhesion between the material and the textile substrate, as well as the premise of meeting demanding wash resistance requirements. This work aims to investigate the possibility of creating sensors by combining textiles with conductive polymeric filaments used in 3D printing. Merging the flexibility of use, mechanical properties and electrical conductivity of the polymeric filaments with the comfort and physical properties of the textiles can be a promising approach to create novel sensing structures. In this document, we give an overview of the recent state of the art of experimental research on adhesion in textile and polymer composites as well as an optimization of the printing parameters with a conductive filament, PI-ETPU. Some results from the printed samples in terms of print quality and electrical resistance are presented. Combining both topics, further work will include printing with conductive filament on textile substrates to study the possibly of creating sensing and electrical connections.","PeriodicalId":35281,"journal":{"name":"Tekstil ve Muhendis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tekstil ve Muhendis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7216/teksmuh.1222553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Additive manufacturing (AM) is a 3D printing technology that works by deposition of a material, layer by layer, creating 3D objects. The growth of these technologies has been exponential and the application of AM in the textile industry has also been a subject of increased interest in the past few years. The applications are not only for decorative purposes, but also for biomedical and other uses in e-textiles. However, a crucial point for making such assembly is the adhesion between the material and the textile substrate, as well as the premise of meeting demanding wash resistance requirements. This work aims to investigate the possibility of creating sensors by combining textiles with conductive polymeric filaments used in 3D printing. Merging the flexibility of use, mechanical properties and electrical conductivity of the polymeric filaments with the comfort and physical properties of the textiles can be a promising approach to create novel sensing structures. In this document, we give an overview of the recent state of the art of experimental research on adhesion in textile and polymer composites as well as an optimization of the printing parameters with a conductive filament, PI-ETPU. Some results from the printed samples in terms of print quality and electrical resistance are presented. Combining both topics, further work will include printing with conductive filament on textile substrates to study the possibly of creating sensing and electrical connections.
三种聚合物涉及基于代数和电子工程的文本。
增材制造(AM)是一种3D打印技术,通过逐层沉积材料来创建3D对象。这些技术呈指数级增长,AM在纺织行业的应用在过去几年中也越来越受到关注。这些应用程序不仅用于装饰目的,还用于生物医学和电子纺织品的其他用途。然而,制造这种组件的一个关键点是材料和织物基底之间的粘附性,以及满足苛刻的耐洗涤要求的前提。这项工作旨在研究通过将纺织品与3D打印中使用的导电聚合物丝相结合来制造传感器的可能性。将聚合物长丝的使用灵活性、机械性能和导电性与纺织品的舒适性和物理性能相结合,可能是创造新型传感结构的一种很有前途的方法。在本文中,我们概述了纺织和聚合物复合材料粘附性的实验研究的最新进展,以及导电细丝PI-ETPU的印刷参数的优化。给出了印刷样品在印刷质量和电阻方面的一些结果。结合这两个主题,进一步的工作将包括在纺织品基底上用导电丝印刷,以研究建立传感和电连接的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tekstil ve Muhendis
Tekstil ve Muhendis Engineering-Industrial and Manufacturing Engineering
CiteScore
0.40
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信