{"title":"Proofs of some conjectures of Keith and Zanello\non t-regular partition","authors":"A. Singh, Rupam Barman","doi":"10.2140/pjm.2022.320.425","DOIUrl":null,"url":null,"abstract":"For a positive integer $t$, let $b_{t}(n)$ denote the number of $t$-regular partitions of a nonnegative integer $n$. In a recent paper, Keith and Zanello established infinite families of congruences and self-similarity results modulo $2$ for $b_{t}(n)$ for certain values of $t$. Further, they proposed some conjectures on self-similarities of $b_t(n)$ modulo $2$ for certain values of $t$. In this paper, we prove their conjectures on $b_3(n)$ and $b_{25}(n)$. We also prove a self-similarity result for $b_{21}(n)$ modulo $2$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.320.425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
For a positive integer $t$, let $b_{t}(n)$ denote the number of $t$-regular partitions of a nonnegative integer $n$. In a recent paper, Keith and Zanello established infinite families of congruences and self-similarity results modulo $2$ for $b_{t}(n)$ for certain values of $t$. Further, they proposed some conjectures on self-similarities of $b_t(n)$ modulo $2$ for certain values of $t$. In this paper, we prove their conjectures on $b_3(n)$ and $b_{25}(n)$. We also prove a self-similarity result for $b_{21}(n)$ modulo $2$.