Andreas Klein, Karsten Albe, Nicole Bein, Oliver Clemens, Kim Alexander Creutz, Paul Erhart, Markus Frericks, Elaheh Ghorbani, Jan Philipp Hofmann, Binxiang Huang, Bernhard Kaiser, Ute Kolb, Jurij Koruza, Christian Kübel, Katharina N. S. Lohaus, Jürgen Rödel, Jochen Rohrer, Wolfgang Rheinheimer, Roger A. De Souza, Verena Streibel, Anke Weidenkaff, Marc Widenmeyer, Bai-Xiang Xu, Hongbin Zhang
{"title":"The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics","authors":"Andreas Klein, Karsten Albe, Nicole Bein, Oliver Clemens, Kim Alexander Creutz, Paul Erhart, Markus Frericks, Elaheh Ghorbani, Jan Philipp Hofmann, Binxiang Huang, Bernhard Kaiser, Ute Kolb, Jurij Koruza, Christian Kübel, Katharina N. S. Lohaus, Jürgen Rödel, Jochen Rohrer, Wolfgang Rheinheimer, Roger A. De Souza, Verena Streibel, Anke Weidenkaff, Marc Widenmeyer, Bai-Xiang Xu, Hongbin Zhang","doi":"10.1007/s10832-023-00324-y","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"51 3","pages":"147 - 177"},"PeriodicalIF":1.7000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-023-00324-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-023-00324-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.