Classification of uniformly distributed measures of dimension $1$ in general codimension

IF 0.5 4区 数学 Q3 MATHEMATICS
P. Laurain, Mircea Petrache
{"title":"Classification of uniformly distributed measures of dimension $1$ in general codimension","authors":"P. Laurain, Mircea Petrache","doi":"10.4310/ajm.2021.v25.n4.a6","DOIUrl":null,"url":null,"abstract":"Starting with the work of Preiss on the geometry of measures, the classification of uniform measures in $\\mathbb R^d$ has remained open, except for $d=1$ and for compactly supported measures in $d=2$, and for codimension $1$. In this paper we study $1$-dimensional measures in $\\mathbb R^d$ for all $d$ and classify uniform measures with connected $1$-dimensional support, which turn out to be homogeneous measures. We provide as well a partial classification of general uniform measures of dimension $1$ in the absence of the connected support hypothesis.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n4.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Starting with the work of Preiss on the geometry of measures, the classification of uniform measures in $\mathbb R^d$ has remained open, except for $d=1$ and for compactly supported measures in $d=2$, and for codimension $1$. In this paper we study $1$-dimensional measures in $\mathbb R^d$ for all $d$ and classify uniform measures with connected $1$-dimensional support, which turn out to be homogeneous measures. We provide as well a partial classification of general uniform measures of dimension $1$ in the absence of the connected support hypothesis.
广义余维中维$1$的均匀分布测度的分类
从Preiss在测度几何上的工作开始,除了d=1$和d=2$紧支持测度以及余维数$1$外,$\mathbb R^d$中的一致测度的分类一直是开放的。本文研究了$\mathbb R^d$中所有$d$的$1维测度,并对具有连通$1维支持的一致测度进行了分类,得到了齐次测度。在没有关联支持假设的情况下,我们也提供了维度$1$的一般统一度量的部分分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信