{"title":"Classification of uniformly distributed measures of dimension $1$ in general codimension","authors":"P. Laurain, Mircea Petrache","doi":"10.4310/ajm.2021.v25.n4.a6","DOIUrl":null,"url":null,"abstract":"Starting with the work of Preiss on the geometry of measures, the classification of uniform measures in $\\mathbb R^d$ has remained open, except for $d=1$ and for compactly supported measures in $d=2$, and for codimension $1$. In this paper we study $1$-dimensional measures in $\\mathbb R^d$ for all $d$ and classify uniform measures with connected $1$-dimensional support, which turn out to be homogeneous measures. We provide as well a partial classification of general uniform measures of dimension $1$ in the absence of the connected support hypothesis.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n4.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Starting with the work of Preiss on the geometry of measures, the classification of uniform measures in $\mathbb R^d$ has remained open, except for $d=1$ and for compactly supported measures in $d=2$, and for codimension $1$. In this paper we study $1$-dimensional measures in $\mathbb R^d$ for all $d$ and classify uniform measures with connected $1$-dimensional support, which turn out to be homogeneous measures. We provide as well a partial classification of general uniform measures of dimension $1$ in the absence of the connected support hypothesis.