Syed Ali Abbas, M. Saeed, Mukhtiar Ghani, Taseer Ahmad
{"title":"Subsurface Cavity Detection Using Electrical Resistivity Tomography (Ert); A Case Study from Southern Quetta, Pakistan","authors":"Syed Ali Abbas, M. Saeed, Mukhtiar Ghani, Taseer Ahmad","doi":"10.2478/pjg-2020-0012","DOIUrl":null,"url":null,"abstract":"Abstract Dipole-dipole electrical resistivity tomographic method was applied to investigate the subsurface cavities at Staff Welfare Hospital & School Quetta. A total of 890-meter profile line was covered along five smaller profile lines and fracture zones with maximum 21 meters interval. The cavity system along profile line-1 and 2 was very restricted and had no direct impact on infrastructure while major cavity beneath the building was traced at profile line-3 and line-4 thus constituting a ~20m wide cavity system with 3-4 small interconnected cavities between depths of 7 to 21 meters. This system was also traced at profile line-4 at a depth of 10 meters having a reduced width of 10m. At profile line-5, a few other cavities were detected that proved imperceptible due to limitations in data acquisition. To conclude, the cavity systems traced in profile line-3 and profile line-4 were the most perilous ones and are commonly the foremost reason for building collapse.","PeriodicalId":32520,"journal":{"name":"Pakistan Journal of Geology","volume":"4 1","pages":"101 - 105"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjg-2020-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Dipole-dipole electrical resistivity tomographic method was applied to investigate the subsurface cavities at Staff Welfare Hospital & School Quetta. A total of 890-meter profile line was covered along five smaller profile lines and fracture zones with maximum 21 meters interval. The cavity system along profile line-1 and 2 was very restricted and had no direct impact on infrastructure while major cavity beneath the building was traced at profile line-3 and line-4 thus constituting a ~20m wide cavity system with 3-4 small interconnected cavities between depths of 7 to 21 meters. This system was also traced at profile line-4 at a depth of 10 meters having a reduced width of 10m. At profile line-5, a few other cavities were detected that proved imperceptible due to limitations in data acquisition. To conclude, the cavity systems traced in profile line-3 and profile line-4 were the most perilous ones and are commonly the foremost reason for building collapse.