Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden–Popper perovskite light-emitting diodes

IF 20.6 1区 物理与天体物理 Q1 OPTICS
G. Jang, Hyowon Han, Sunihl Ma, Junwoo Lee, Chang Uk Lee, Woo-Yang Jeong, J. Son, Dongki Cho, Ji‐Hee Kim, Cheolmin Park, Jooho Moon
{"title":"Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden–Popper perovskite light-emitting diodes","authors":"G. Jang, Hyowon Han, Sunihl Ma, Junwoo Lee, Chang Uk Lee, Woo-Yang Jeong, J. Son, Dongki Cho, Ji‐Hee Kim, Cheolmin Park, Jooho Moon","doi":"10.1117/1.AP.5.1.016001","DOIUrl":null,"url":null,"abstract":"Abstract. Perovskite light-emitting diodes (PeLEDs) are considered as promising candidates for next-generation solution-processed full-color displays. However, the external quantum efficiencies (EQEs) and operational stabilities of deep-blue (<460  nm) PeLEDs still lag far behind their red and green counterparts. Herein, a rapid crystallization method based on hot-antisolvent bathing is proposed for realization of deep-blue PeLEDs. By promoting immediate removal of the precursor solvent from the wet perovskite films, development of the quasi-two-dimensional (2D) Ruddlesden–Popper perovskite (2D-RPP) crystals with n values >3 is hampered completely, so that phase-pure 2D-RPP films with bandgaps suitable for deep-blue PeLEDs can be obtained successfully. The uniquely developed rapid crystallization method also enables formation of randomly oriented 2D-RPP crystals, thereby improving the transfer and transport kinetics of the charge carriers. Thus, high-performance deep-blue PeLEDs emitting at 437 nm with a peak EQE of 0.63% are successfully demonstrated. The color coordinates are confirmed to be (0.165, 0.044), which match well with the Rec.2020 standard blue gamut and have excellent spectral stability.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"016001 - 016001"},"PeriodicalIF":20.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.5.1.016001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract. Perovskite light-emitting diodes (PeLEDs) are considered as promising candidates for next-generation solution-processed full-color displays. However, the external quantum efficiencies (EQEs) and operational stabilities of deep-blue (<460  nm) PeLEDs still lag far behind their red and green counterparts. Herein, a rapid crystallization method based on hot-antisolvent bathing is proposed for realization of deep-blue PeLEDs. By promoting immediate removal of the precursor solvent from the wet perovskite films, development of the quasi-two-dimensional (2D) Ruddlesden–Popper perovskite (2D-RPP) crystals with n values >3 is hampered completely, so that phase-pure 2D-RPP films with bandgaps suitable for deep-blue PeLEDs can be obtained successfully. The uniquely developed rapid crystallization method also enables formation of randomly oriented 2D-RPP crystals, thereby improving the transfer and transport kinetics of the charge carriers. Thus, high-performance deep-blue PeLEDs emitting at 437 nm with a peak EQE of 0.63% are successfully demonstrated. The color coordinates are confirmed to be (0.165, 0.044), which match well with the Rec.2020 standard blue gamut and have excellent spectral stability.
快速结晶驱动的高效相纯深蓝色Ruddlesden-Popper钙钛矿发光二极管
摘要钙钛矿发光二极管(PeLEDs)被认为是下一代溶液处理全彩色显示器的有前途的候选者。然而,深海蓝(3)的外量子效率(EQEs)和运行稳定性完全受到阻碍,因此可以成功获得适合深海蓝pled的带隙纯相2D-RPP薄膜。独特开发的快速结晶方法还可以形成随机取向的2D-RPP晶体,从而改善载流子的转移和输运动力学。因此,成功地展示了在437 nm发射的高性能深蓝pled,峰值EQE为0.63%。确认颜色坐标为(0.165,0.044),与Rec.2020标准蓝域匹配良好,具有良好的光谱稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
22.70
自引率
1.20%
发文量
49
审稿时长
18 weeks
期刊介绍: Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential. The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria: -New concepts in terms of fundamental research with great impact and significance -State-of-the-art technologies in terms of novel methods for important applications -Reviews of recent major advances and discoveries and state-of-the-art benchmarking. The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信