H. Guentri, A. Dahbi, T. Allaoui, S. Aoulmit, A. Bouraiou
{"title":"Development of a Control Strategy for the Hybrid Energy Storage Systems in Standalone Microgrid","authors":"H. Guentri, A. Dahbi, T. Allaoui, S. Aoulmit, A. Bouraiou","doi":"10.32985/ijeces.14.5.9","DOIUrl":null,"url":null,"abstract":"The intermediate energy storage system is very necessary for the standalone multi-source renewable energy system to increase stability, reliability of supply, and power quality. Among the most practical energy storage solutions is combining supercapacitors and chemical batteries. However, the major problem in this kind of application is the design of the power management, as well as the control scheme of hybrid energy storage systems. The focal purpose of this paper is to develop a novel approach to control DC bus voltage based on the reference power's frequency decomposition. This paper uses a storage system combined of batteries and supercapacitors. These later are integrated in the multi-source renewable energy system to supply an AC load. This technique uses the low-pass filters' properties to control the DC bus voltage by balancing the generated green power and the fluctuating load. The hybrid storage system regulates power fluctuations by absorbing surplus power and providing required power. The results show good performances of the proposed control scheme, such as low battery current charge/discharge rates, lower current stress level on batteries, voltage control improvements, which lead to increase the battery life.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.5.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The intermediate energy storage system is very necessary for the standalone multi-source renewable energy system to increase stability, reliability of supply, and power quality. Among the most practical energy storage solutions is combining supercapacitors and chemical batteries. However, the major problem in this kind of application is the design of the power management, as well as the control scheme of hybrid energy storage systems. The focal purpose of this paper is to develop a novel approach to control DC bus voltage based on the reference power's frequency decomposition. This paper uses a storage system combined of batteries and supercapacitors. These later are integrated in the multi-source renewable energy system to supply an AC load. This technique uses the low-pass filters' properties to control the DC bus voltage by balancing the generated green power and the fluctuating load. The hybrid storage system regulates power fluctuations by absorbing surplus power and providing required power. The results show good performances of the proposed control scheme, such as low battery current charge/discharge rates, lower current stress level on batteries, voltage control improvements, which lead to increase the battery life.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.