Modelling and optimisation of active front wheel steering system control for armoured vehicle for firing disturbance rejection

Q4 Engineering
M. Mansor, K. Hudha, Z. A. Kadir, N. H. Amer, V. R. Aparow
{"title":"Modelling and optimisation of active front wheel steering system control for armoured vehicle for firing disturbance rejection","authors":"M. Mansor, K. Hudha, Z. A. Kadir, N. H. Amer, V. R. Aparow","doi":"10.1504/IJVAS.2017.10008213","DOIUrl":null,"url":null,"abstract":"While firing on the move, the handling performance of an armoured vehicle is affected, thus causing it to lose its directional stability. This is due to an impulse force generated at the centre of the gun turret, which can produce an unwanted yaw moment at the centre of gravity of the armoured vehicle. In order to reject the unwanted yaw moment, a new hybrid control strategy known as Neural-PI controller had been introduced by combining neural network system and conventional PI controller. This paper developed 14 DOF of armoured vehicle and 2 DOF of Pitman arm steering system. Other than that, determination of the most suitable activation function to be implemented in the Neural-PI controller has been carried out and optimised by using the Genetic Algorithm (GA) method. The performance of the controller was evaluated by comparing the conventional PI controller with the Neural-PI controller implemented with different activation functions.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVAS.2017.10008213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

While firing on the move, the handling performance of an armoured vehicle is affected, thus causing it to lose its directional stability. This is due to an impulse force generated at the centre of the gun turret, which can produce an unwanted yaw moment at the centre of gravity of the armoured vehicle. In order to reject the unwanted yaw moment, a new hybrid control strategy known as Neural-PI controller had been introduced by combining neural network system and conventional PI controller. This paper developed 14 DOF of armoured vehicle and 2 DOF of Pitman arm steering system. Other than that, determination of the most suitable activation function to be implemented in the Neural-PI controller has been carried out and optimised by using the Genetic Algorithm (GA) method. The performance of the controller was evaluated by comparing the conventional PI controller with the Neural-PI controller implemented with different activation functions.
装甲车辆抗射击干扰主动前轮转向系统控制建模与优化
在行驶中开火时,装甲车的操纵性能会受到影响,从而导致其失去方向稳定性。这是由于炮塔中心产生的冲力,这可能会在装甲车的重心产生不必要的偏航力矩。为了抑制不必要的横摆力矩,将神经网络系统与传统的PI控制器相结合,提出了一种新的混合控制策略——神经PI控制器。本文研制了14自由度装甲车转向系统和2自由度皮特曼臂转向系统。除此之外,已经使用遗传算法(GA)方法来确定要在神经PI控制器中实现的最合适的激活函数并对其进行优化。通过将传统的PI控制器与采用不同激活函数实现的神经PI控制器进行比较,评估了控制器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Vehicle Autonomous Systems
International Journal of Vehicle Autonomous Systems Engineering-Automotive Engineering
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: The IJVAS provides an international forum and refereed reference in the field of vehicle autonomous systems research and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信