Norm of the discrete Cesàaro operator minus identity

IF 0.9 4区 数学 Q2 MATHEMATICS
G. Sinnamon
{"title":"Norm of the discrete Cesàaro operator minus identity","authors":"G. Sinnamon","doi":"10.7153/mia-2022-25-04","DOIUrl":null,"url":null,"abstract":"The norm of C−I on l, where C is the Cesàro operator, is shown to be 1/(p − 1) when 1 < p ≤ 2. This verifies a recent conjecture of G. J. O. Jameson. The norm of C − I on l is also determined when 2 < p < ∞. The two parts together answer a question raised by G. Bennett in 1996. Operator norms in the continuous case, Hardy’s averaging operator minus identity, are already known. Norms in the discrete and continuous cases coincide. The Cesàro operator, C, maps a sequence (xn) to (yn), where yn = 1 n n","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2022-25-04","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

The norm of C−I on l, where C is the Cesàro operator, is shown to be 1/(p − 1) when 1 < p ≤ 2. This verifies a recent conjecture of G. J. O. Jameson. The norm of C − I on l is also determined when 2 < p < ∞. The two parts together answer a question raised by G. Bennett in 1996. Operator norms in the continuous case, Hardy’s averaging operator minus identity, are already known. Norms in the discrete and continuous cases coincide. The Cesàro operator, C, maps a sequence (xn) to (yn), where yn = 1 n n
离散Cesàaro算子的范数减去恒等式
当1<p≤2时,C−I在l上的范数(其中C是Cesàro算子)被证明是1/(p−1)。这证实了詹姆逊最近的一个猜想。当2<p<∞时,C−I在l上的范数也被确定。这两部分共同回答了G.Bennett在1996年提出的一个问题。连续情况下的算子范数,Hardy的平均算子减恒等式,已经为人所知。离散和连续情况下的规范是一致的。Cesàro算子C将序列(xn)映射到(yn),其中yn=1 n n
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信