{"title":"HILS based Waypoint Simulation for Fixed Wing Unmanned Aerial Vehicle (UAV)","authors":"Kaviyarasu A, Saravanakumar A, Rajesh G","doi":"10.14429/dsj.72.17952","DOIUrl":null,"url":null,"abstract":"Hardware in loop simulation HILS-based waypoint simulation for fixed wing unmanned aerial vehicles is proposed in this paper. It uses an open-source arducopter as a flight controller, mission planner, and X-plane simulator. Waypoint simulation is carried out in the flight controller and executed in an X-plane simulator through a mission planner. A fixed wing unmanned aerial vehicle with an inverted T tail configuration has been chosen to study and validate waypoint flight control algorithms. The data transmission between mission planner and flight controller is done by serial protocol, whereas data exchange between X-plane and mission planner is done by User Datagram Protocol (UDP). APM mission planner is used as a machine interface to exchange data between the flight controller and the user. User inputs and flight gain parameters, both inner loop and outer loop, can be modified with the help of a mission planner. In addition to that, the mission planner provides a visual output representation of flight data and navigation algorithm.","PeriodicalId":11043,"journal":{"name":"Defence Science Journal","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14429/dsj.72.17952","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hardware in loop simulation HILS-based waypoint simulation for fixed wing unmanned aerial vehicles is proposed in this paper. It uses an open-source arducopter as a flight controller, mission planner, and X-plane simulator. Waypoint simulation is carried out in the flight controller and executed in an X-plane simulator through a mission planner. A fixed wing unmanned aerial vehicle with an inverted T tail configuration has been chosen to study and validate waypoint flight control algorithms. The data transmission between mission planner and flight controller is done by serial protocol, whereas data exchange between X-plane and mission planner is done by User Datagram Protocol (UDP). APM mission planner is used as a machine interface to exchange data between the flight controller and the user. User inputs and flight gain parameters, both inner loop and outer loop, can be modified with the help of a mission planner. In addition to that, the mission planner provides a visual output representation of flight data and navigation algorithm.
期刊介绍:
Defence Science Journal is a peer-reviewed, multidisciplinary research journal in the area of defence science and technology. Journal feature recent progresses made in the field of defence/military support system and new findings/breakthroughs, etc. Major subject fields covered include: aeronautics, armaments, combat vehicles and engineering, biomedical sciences, computer sciences, electronics, material sciences, missiles, naval systems, etc.