Semantic Segmentation of Eye Fundus Images Using Convolutional Neural Networks

Q3 Engineering
Ričardas Toliušis, O. Kurasova, J. Bernatavičienė
{"title":"Semantic Segmentation of Eye Fundus Images Using Convolutional Neural Networks","authors":"Ričardas Toliušis, O. Kurasova, J. Bernatavičienė","doi":"10.15388/im.2019.85.20","DOIUrl":null,"url":null,"abstract":"The article reviews the problems of eye bottom fundus analysis and semantic segmentation algorithms used to distinguish eye vessels, optical disk. Various diseases, such as glaucoma, hypertension, diabetic retinopathy, macular degeneration, etc., can be diagnosed by changes and anomalies of vesssels and optical disk. For semantic segmentation convolutional neural networks, especially U-Net architecture, are well suited. Recently a number of U-Net modifications have been developed that deliver excellent performance results.","PeriodicalId":37230,"journal":{"name":"Informacijos Mokslai","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacijos Mokslai","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/im.2019.85.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The article reviews the problems of eye bottom fundus analysis and semantic segmentation algorithms used to distinguish eye vessels, optical disk. Various diseases, such as glaucoma, hypertension, diabetic retinopathy, macular degeneration, etc., can be diagnosed by changes and anomalies of vesssels and optical disk. For semantic segmentation convolutional neural networks, especially U-Net architecture, are well suited. Recently a number of U-Net modifications have been developed that deliver excellent performance results.
卷积神经网络在眼底图像语义分割中的应用
本文综述了眼底分析和用于区分血管、光盘的语义分割算法中存在的问题。各种疾病,如青光眼、高血压、糖尿病视网膜病变、黄斑变性等,都可以通过血管和光盘的变化和异常来诊断。对于语义分割,卷积神经网络,尤其是U-Net架构,非常适合。最近,已经开发了许多U-Net修改,以提供优异的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Informacijos Mokslai
Informacijos Mokslai Engineering-Media Technology
CiteScore
0.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信