H. Dimou, Y. Aribou, S. Kabbaj
{"title":"Generalized functional inequalities in Banach spaces","authors":"H. Dimou, Y. Aribou, S. Kabbaj","doi":"10.2478/mjpaa-2021-0022","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we solve and investigate the generalized additive functional inequalities ‖ F(∑i=1nxi)-∑i=1nF(xi) ‖≤‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖ \\left\\| {F\\left( {\\sum\\limits_{i = 1}^n {{x_i}} } \\right) - \\sum\\limits_{i = 1}^n {F\\left( {{x_i}} \\right)} } \\right\\| \\le \\left\\| {F\\left( {{1 \\over n}\\sum\\limits_{i = 1}^n {{x_i}} } \\right) - {1 \\over n}\\sum\\limits_{i = 1}^n {F\\left( {{x_i}} \\right)} } \\right\\| and ‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖≤‖ F(∑i=1nxi)-∑i=1nF(xi) ‖. \\left\\| {F\\left( {{1 \\over n}\\sum\\limits_{i = 1}^n {{x_i}} } \\right) - {1 \\over n}\\sum\\limits_{i = 1}^n {F\\left( {{x_i}} \\right)} } \\right\\| \\le \\left\\| {F\\left( {\\sum\\limits_{i = 1}^n {{x_i}} } \\right) - \\sum\\limits_{i = 1}^n {F\\left( {{x_i}} \\right)} } \\right\\|. Using the direct method, we prove the Hyers-Ulam stability of the functional inequalities (0.1) in Banach spaces and (0.2) in non-Archimedian Banach spaces.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"7 1","pages":"337 - 349"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2021-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Banach空间中的广义泛函不等式
摘要本文求解并研究了广义可加泛函不等式‖F(∑i=1nxi)—∑i=1nF(xi)‖≤‖F(1n∑i=1nxi)—1n∑i=1nF(xi)‖ \left\ b| {f\left( {\sum\limits_{I = 1}^n {{x_i}} } \right)—— \sum\limits_{I = 1}^n {f\left( {{x_i}} \right)} } \right\ b| \le \left\ b| {f\left( {{1 \over n}\sum\limits_{I = 1}^n {{x_i}} } \right)—— {1 \over n}\sum\limits_{I = 1}^n {f\left( {{x_i}} \right)} } \right\|和‖F(1n∑i=1nxi)-1n∑i=1nF(xi)‖≤‖F(∑i=1nxi)-∑i=1nF(xi)‖。 \left\ b| {f\left( {{1 \over n}\sum\limits_{I = 1}^n {{x_i}} } \right)—— {1 \over n}\sum\limits_{I = 1}^n {f\left( {{x_i}} \right)} } \right\ b| \le \left\ b| {f\left( {\sum\limits_{I = 1}^n {{x_i}} } \right)—— \sum\limits_{I = 1}^n {f\left( {{x_i}} \right)} } \right\|。利用直接方法证明了Banach空间中的(0.1)和非archimid Banach空间中的(0.2)泛函不等式的Hyers-Ulam稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。