Particle swarm optimization for searching efficient experimental designs: A review

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
Ping-Yang Chen, Ray‐Bing Chen, W. Wong
{"title":"Particle swarm optimization for searching efficient experimental designs: A review","authors":"Ping-Yang Chen, Ray‐Bing Chen, W. Wong","doi":"10.1002/wics.1578","DOIUrl":null,"url":null,"abstract":"The class of nature‐inspired metaheuristic algorithms is increasingly used to tackle all kinds of optimization problems across disciplines. It also plays an important component in artificial intelligence and machine learning. Members in this class are general purpose optimization tools that virtually require no assumptions for them to be applicable. There are many such algorithms, and to fix ideas, we review one of its exemplary members called particle swarm optimization (PSO). We discuss the algorithm, its recent applications to find different types of efficient experimental designs, and provide resources, where codes for PSO and other metaheuristic algorithms and tutorials with examples are available.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1578","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 11

Abstract

The class of nature‐inspired metaheuristic algorithms is increasingly used to tackle all kinds of optimization problems across disciplines. It also plays an important component in artificial intelligence and machine learning. Members in this class are general purpose optimization tools that virtually require no assumptions for them to be applicable. There are many such algorithms, and to fix ideas, we review one of its exemplary members called particle swarm optimization (PSO). We discuss the algorithm, its recent applications to find different types of efficient experimental designs, and provide resources, where codes for PSO and other metaheuristic algorithms and tutorials with examples are available.
基于粒子群算法的高效实验设计研究进展
自然启发的元启发式算法越来越多地用于解决跨学科的各种优化问题。它在人工智能和机器学习中也起着重要的作用。该类中的成员是通用的优化工具,实际上不需要任何假设就可以应用。有许多这样的算法,为了解决问题,我们回顾了其中一个典型的成员,即粒子群优化(PSO)。我们讨论了该算法及其在寻找不同类型的高效实验设计方面的最新应用,并提供了资源,其中PSO和其他元启发式算法的代码和示例教程可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信