{"title":"A dynamic self-improving ramp metering algorithm based on multi-agent deep reinforcement learning","authors":"","doi":"10.1080/19427867.2023.2231638","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel ramp metering algorithm that incorporates multi-agent deep reinforcement learning (DRL) techniques, which utilizes monitoring data from loop detectors. Our proposed approach employed a multi-agent DRL framework to generate optimized ramp metering schedules for each ramp meter in real-time, enhancing the operational efficiency of urban freeways with less investment. To simplify the implementation and training of the algorithm, we developed a simulation platform based on SUMO microscopic traffic simulator. We conducted a series of simulation experiments, including local and coordinated ramp metering scenarios with various traffic demands profiles. The simulation results indicate that the proposed DRL-based algorithm outperforms the state-of-the-practice ramp metering methods, considering a comprehensive evaluation index encompassing mainstream speed at the bottleneck and queue length on ramp. Additionally, the method exhibits robustness, scalability, and the potential for further improvement through online learning during implementation.</p></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"16 7","pages":"Pages 649-657"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786723002217","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel ramp metering algorithm that incorporates multi-agent deep reinforcement learning (DRL) techniques, which utilizes monitoring data from loop detectors. Our proposed approach employed a multi-agent DRL framework to generate optimized ramp metering schedules for each ramp meter in real-time, enhancing the operational efficiency of urban freeways with less investment. To simplify the implementation and training of the algorithm, we developed a simulation platform based on SUMO microscopic traffic simulator. We conducted a series of simulation experiments, including local and coordinated ramp metering scenarios with various traffic demands profiles. The simulation results indicate that the proposed DRL-based algorithm outperforms the state-of-the-practice ramp metering methods, considering a comprehensive evaluation index encompassing mainstream speed at the bottleneck and queue length on ramp. Additionally, the method exhibits robustness, scalability, and the potential for further improvement through online learning during implementation.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.