Polyaniline as Novel Polymer Materials for Dry Electrode- Based Electrocardiography (ECG)

Jeffry Omega Prima, B. Pamungkas, Nugraha, Suprijanto
{"title":"Polyaniline as Novel Polymer Materials for Dry Electrode- Based Electrocardiography (ECG)","authors":"Jeffry Omega Prima, B. Pamungkas, Nugraha, Suprijanto","doi":"10.14203/JET.V18.1-8","DOIUrl":null,"url":null,"abstract":"Electrocardiography (ECG) has been instrumental for early detection of cardiovascular anomalies. In this research, we successfully prototyped and evaluated the performance of a novel dry electrode as ECG sensor. Copper was selected as dry electrode material due to its good balance between conductivity and affordability. Polyaniline was used as a conductive coating to facilitate the conversion of ionic currents from the human body into electrical currents in electronic circuits. The coating was carried out via electrodeposition technique. Optimal electrodeposition time of 20 min using acetic acid as a dopant was established. This yields in the dry electrode with comparable performance to the certified wet electrode currently available in the market, shown by PQRST signal correlation between dry electrodes (this study) and the wet electrode (benchmark) which is close to zero. The dry electrode prototyped in this study is characterized to have a conductivity of 7 x 10 -4 S/mm, a resistance of 10 Ω, capacitive reactance of 140 Ω, and excellent signal stability showing a value of 256.5 μV consistently for 2 hours.","PeriodicalId":32393,"journal":{"name":"Jurnal Elektronika dan Telekomunikasi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Elektronika dan Telekomunikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14203/JET.V18.1-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electrocardiography (ECG) has been instrumental for early detection of cardiovascular anomalies. In this research, we successfully prototyped and evaluated the performance of a novel dry electrode as ECG sensor. Copper was selected as dry electrode material due to its good balance between conductivity and affordability. Polyaniline was used as a conductive coating to facilitate the conversion of ionic currents from the human body into electrical currents in electronic circuits. The coating was carried out via electrodeposition technique. Optimal electrodeposition time of 20 min using acetic acid as a dopant was established. This yields in the dry electrode with comparable performance to the certified wet electrode currently available in the market, shown by PQRST signal correlation between dry electrodes (this study) and the wet electrode (benchmark) which is close to zero. The dry electrode prototyped in this study is characterized to have a conductivity of 7 x 10 -4 S/mm, a resistance of 10 Ω, capacitive reactance of 140 Ω, and excellent signal stability showing a value of 256.5 μV consistently for 2 hours.
聚苯胺作为新型高分子材料用于干电极心电图
心电图(ECG)已成为早期检测心血管异常的工具。在这项研究中,我们成功地原型和评估了一种新型干电极作为心电传感器的性能。选择铜作为干电极材料是因为它在导电性和可负担性之间取得了良好的平衡。聚苯胺被用作导电涂层,以促进从人体的离子电流转换为电子电路中的电流。采用电沉积技术进行涂层制备。确定了以乙酸为掺杂剂的最佳电沉积时间为20 min。这使得干电极的性能与目前市场上获得认证的湿电极相当,干电极(本研究)和湿电极(基准)之间的PQRST信号相关性接近于零。该干电极的电导率为7 × 10 -4 S/mm,电阻为10 Ω,容抗为140 Ω,具有良好的信号稳定性,可连续2小时保持256.5 μV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信