{"title":"Rational ergodicity of step function skew products","authors":"J. Aaronson, Michael Bromberg, Nishant Chandgotia","doi":"10.3934/jmd.2018012","DOIUrl":null,"url":null,"abstract":"We study rational step function skew products over certain rotations of the circle proving ergodicity and bounded rational ergodicity when the rotation number is a quadratic irrational. The latter arises from a consideration of the asymptotic temporal statistics of an orbit as modelled by an associated affine random walk.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2018012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We study rational step function skew products over certain rotations of the circle proving ergodicity and bounded rational ergodicity when the rotation number is a quadratic irrational. The latter arises from a consideration of the asymptotic temporal statistics of an orbit as modelled by an associated affine random walk.