An Elliptic Centerness for Object Instance Segmentation in Aerial Images

遥感学报 Pub Date : 2022-06-02 DOI:10.34133/2022/9809505
Yixin Luo, Jiaming Han, Zhou Liu, Mi Wang, Guisong Xia
{"title":"An Elliptic Centerness for Object Instance Segmentation in Aerial Images","authors":"Yixin Luo, Jiaming Han, Zhou Liu, Mi Wang, Guisong Xia","doi":"10.34133/2022/9809505","DOIUrl":null,"url":null,"abstract":"Instance segmentation in aerial images is an important and challenging task. Most of the existing methods have adapted instance segmentation algorithms developed for natural images to aerial images. However, these methods easily suffer from performance degradation in aerial images, due to the scale variations, large aspect ratios, and arbitrary orientations of instances caused by the bird’s-eye view of aerial images. To address this issue, we propose an elliptic centerness (EC) for instance segmentation in aerial images, which can assign the proper centerness values to the intricate aerial instances and thus mitigate the performance degradation. Specifically, we introduce ellipses to fit the various contours of aerial instances and measure these fitted ellipses by two-dimensional anisotropic Gaussian distribution. Armed with EC, we develop a one-stage aerial instance segmentation network. Extensive experiments on a commonly used dataset, the instance segmentation in aerial images dataset (iSAID), demonstrate that our proposed method can achieve a remarkable performance of instance segmentation while introducing negligible computational cost.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2022/9809505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Instance segmentation in aerial images is an important and challenging task. Most of the existing methods have adapted instance segmentation algorithms developed for natural images to aerial images. However, these methods easily suffer from performance degradation in aerial images, due to the scale variations, large aspect ratios, and arbitrary orientations of instances caused by the bird’s-eye view of aerial images. To address this issue, we propose an elliptic centerness (EC) for instance segmentation in aerial images, which can assign the proper centerness values to the intricate aerial instances and thus mitigate the performance degradation. Specifically, we introduce ellipses to fit the various contours of aerial instances and measure these fitted ellipses by two-dimensional anisotropic Gaussian distribution. Armed with EC, we develop a one-stage aerial instance segmentation network. Extensive experiments on a commonly used dataset, the instance segmentation in aerial images dataset (iSAID), demonstrate that our proposed method can achieve a remarkable performance of instance segmentation while introducing negligible computational cost.
基于椭圆中心的航拍图像目标实例分割
航拍图像的实例分割是一项重要而富有挑战性的任务。现有的方法大多是将针对自然图像开发的实例分割算法应用于航空图像。然而,这些方法在航拍图像中容易受到航拍图像的尺度变化、大长宽比和任意方向的影响而导致性能下降。为了解决这一问题,我们提出了一种用于航空图像实例分割的椭圆中心度(EC),它可以为复杂的航空图像实例分配适当的中心度值,从而减轻性能下降。具体来说,我们引入椭圆来拟合空中实例的各种轮廓,并用二维各向异性高斯分布测量这些拟合的椭圆。在此基础上,我们开发了一种单阶段的航空实例分割网络。在一个常用的数据集——航空图像数据集实例分割(iSAID)上进行的大量实验表明,我们提出的方法可以在引入可忽略不计的计算成本的情况下获得显著的实例分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
遥感学报
遥感学报 Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信