Herbrand complexity and the epsilon calculus with equality

IF 0.3 4区 数学 Q1 Arts and Humanities
Kenji Miyamoto, Georg Moser
{"title":"Herbrand complexity and the epsilon calculus with equality","authors":"Kenji Miyamoto,&nbsp;Georg Moser","doi":"10.1007/s00153-023-00877-3","DOIUrl":null,"url":null,"abstract":"<div><p>The <span>\\(\\varepsilon \\)</span>-elimination method of Hilbert’s <span>\\(\\varepsilon \\)</span>-calculus yields the up-to-date most direct algorithm for computing the Herbrand disjunction of an extensional formula. A central advantage is that the upper bound on the Herbrand complexity obtained is independent of the propositional structure of the proof. Prior (modern) work on Hilbert’s <span>\\(\\varepsilon \\)</span>-calculus focused mainly on the pure calculus, without equality. We clarify that this independence also holds for first-order logic with equality. Further, we provide upper bounds analyses of the extended first <span>\\(\\varepsilon \\)</span>-theorem, even if the formalisation incorporates so-called <span>\\(\\varepsilon \\)</span>-equality axioms.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-023-00877-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

The \(\varepsilon \)-elimination method of Hilbert’s \(\varepsilon \)-calculus yields the up-to-date most direct algorithm for computing the Herbrand disjunction of an extensional formula. A central advantage is that the upper bound on the Herbrand complexity obtained is independent of the propositional structure of the proof. Prior (modern) work on Hilbert’s \(\varepsilon \)-calculus focused mainly on the pure calculus, without equality. We clarify that this independence also holds for first-order logic with equality. Further, we provide upper bounds analyses of the extended first \(\varepsilon \)-theorem, even if the formalisation incorporates so-called \(\varepsilon \)-equality axioms.

Herbrand复杂度和相等的微积分
希尔伯特的 \(\varepsilon \)-微积分的 \(\varepsilon \)-消除方法产生了计算外延公式的赫伯兰析取的最新最直接算法。它的一个核心优势是,所得到的赫伯兰复杂度上限与证明的命题结构无关。关于希尔伯特(Hilbert's \(\varepsilon \)-calculus)的先前(现代)工作主要集中在纯微积分上,而不包括等式。我们澄清了这种独立性对于有相等性的一阶逻辑也是成立的。此外,我们提供了扩展的第一(\varepsilon \)定理的上限分析,即使形式化包含了所谓的(\varepsilon \)不等式公理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信