Evaluating properties of high performance concrete containing metakaolin as cementitious material

Q2 Engineering
Moulshree Dubey, S. Deo, G. Ramtekkar
{"title":"Evaluating properties of high performance concrete containing metakaolin as cementitious material","authors":"Moulshree Dubey, S. Deo, G. Ramtekkar","doi":"10.1556/1848.2021.00359","DOIUrl":null,"url":null,"abstract":"\n High performance concrete is extensively used for construction works in recent era. For the preparation of high performance concrete (HPC) mineral and chemical admixtures are used. The addition of mineral admixtures minimizes the utilization of cement and makes concrete more sustainable. The addition of metakaolin as a substitute to cement enhances the properties of concrete. There is need to study the mechanical and micro-structural properties of concrete containing metakaolin as cementitious material. In this work an endeavour has been made to study the properties of HPC employing matakaolin as an alternative for cement. The cement has been replaced with metakaolin by 5%, 10%, 15%, 20%, and 25% respectively for 0.25, 0.3, and 0.35 w/c ratios. The strength and electrical resistivity tests are conducted for all concrete mixes on triplicate. Results confirm that the accumulation of metakaolin increases the properties of HPC. A maximum of 49% increase in compressive strength in concrete was observed by the accumulation of 15% of metakaolin in concrete as substitute to cement for 0.25 w/c ratio in comparison to standard concrete. The development of secondary calcium silicate hydrates and minimal Ca(OH)2 components was revealed by X-ray spectroscopy, indicating that the concrete was denser. The results of this study revealed that metakaolin has a considerable impact on high-performance concrete, particularly in terms of compressive and flexural strength.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2021.00359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

High performance concrete is extensively used for construction works in recent era. For the preparation of high performance concrete (HPC) mineral and chemical admixtures are used. The addition of mineral admixtures minimizes the utilization of cement and makes concrete more sustainable. The addition of metakaolin as a substitute to cement enhances the properties of concrete. There is need to study the mechanical and micro-structural properties of concrete containing metakaolin as cementitious material. In this work an endeavour has been made to study the properties of HPC employing matakaolin as an alternative for cement. The cement has been replaced with metakaolin by 5%, 10%, 15%, 20%, and 25% respectively for 0.25, 0.3, and 0.35 w/c ratios. The strength and electrical resistivity tests are conducted for all concrete mixes on triplicate. Results confirm that the accumulation of metakaolin increases the properties of HPC. A maximum of 49% increase in compressive strength in concrete was observed by the accumulation of 15% of metakaolin in concrete as substitute to cement for 0.25 w/c ratio in comparison to standard concrete. The development of secondary calcium silicate hydrates and minimal Ca(OH)2 components was revealed by X-ray spectroscopy, indicating that the concrete was denser. The results of this study revealed that metakaolin has a considerable impact on high-performance concrete, particularly in terms of compressive and flexural strength.
以偏高岭土为胶凝材料的高性能混凝土性能评价
近年来,高性能混凝土在建筑工程中得到了广泛的应用。为了制备高性能混凝土(HPC),使用了矿物和化学外加剂。矿物掺合料的加入最大限度地减少了水泥的使用,使混凝土更具可持续性。偏高岭土作为水泥的替代品,提高了混凝土的性能。有必要研究以偏高岭土为胶凝材料的混凝土的力学性能和微观结构性能。在这项工作中,我们致力于研究采用偏高岭土作为水泥替代品的高性能混凝土的性能。对于0.25、0.3和0.35的水灰比,用偏高岭土分别代替水泥5%、10%、15%、20%和25%。对所有混凝土混合料进行强度和电阻率测试,一式三份。结果证实偏高岭土的积累提高了高性能混凝土的性能。与标准混凝土相比,通过在混凝土中积累15%的偏高岭土作为0.25水灰比的水泥替代品,观察到混凝土抗压强度最大增加49%。X射线光谱揭示了次生硅酸钙水合物和最小Ca(OH)2组分的发展,表明混凝土密度更大。这项研究的结果表明,偏高岭土对高性能混凝土有相当大的影响,特别是在抗压强度和抗弯强度方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Review of Applied Sciences and Engineering
International Review of Applied Sciences and Engineering Materials Science-Materials Science (miscellaneous)
CiteScore
2.30
自引率
0.00%
发文量
27
审稿时长
46 weeks
期刊介绍: International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信