ω-circularity of Yablo's paradox

IF 0.6 Q2 LOGIC
A. Cevik
{"title":"ω-circularity of Yablo's paradox","authors":"A. Cevik","doi":"10.12775/llp.2019.032","DOIUrl":null,"url":null,"abstract":"In this paper, we strengthen Hardy’s [1995] and Ketland’s [2005] arguments on the issues surrounding the self-referential nature of Yablo’s paradox [1993]. We first begin by observing that Priest’s [1997] construction of the binary satisfaction relation in revealing a fixed point relies on impredicative definitions. We then show that Yablo’s paradox is ‘ω-circular’, based on ω-inconsistent theories, by arguing that the paradox is not self-referential in the classical sense but rather admits circularity at the least transfinite countable ordinal. Hence, we both strengthen arguments for the ω-inconsistency of Yablo’s paradox and present a compromise solution of the problem emerged from Yablo’s and Priest’s conflicting theses.","PeriodicalId":43501,"journal":{"name":"Logic and Logical Philosophy","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Logical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/llp.2019.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we strengthen Hardy’s [1995] and Ketland’s [2005] arguments on the issues surrounding the self-referential nature of Yablo’s paradox [1993]. We first begin by observing that Priest’s [1997] construction of the binary satisfaction relation in revealing a fixed point relies on impredicative definitions. We then show that Yablo’s paradox is ‘ω-circular’, based on ω-inconsistent theories, by arguing that the paradox is not self-referential in the classical sense but rather admits circularity at the least transfinite countable ordinal. Hence, we both strengthen arguments for the ω-inconsistency of Yablo’s paradox and present a compromise solution of the problem emerged from Yablo’s and Priest’s conflicting theses.
Yablo悖论的ω-圆性
在本文中,我们加强了Hardy[1995]和Ketland[2005]关于Yablo悖论[1993]的自我指涉性质问题的论点。我们首先观察到Priest[1997]在揭示不动点时二元满足关系的构建依赖于不可预知的定义。然后,我们证明Yablo悖论是“ω-循环”的,基于ω-不一致的理论,论证悖论在经典意义上不是自指的,而是至少在超有限可数序数上承认循环。因此,我们都加强了对Yablo悖论ω-不一致性的论证,并对Yablo和Priest的矛盾论点中出现的问题提出了妥协的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
40.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信