The Lax equation and weak regularity of asymptotic estimate Lie groups

Pub Date : 2023-04-05 DOI:10.1007/s10455-023-09888-y
Maximilian Hanusch
{"title":"The Lax equation and weak regularity of asymptotic estimate Lie groups","authors":"Maximilian Hanusch","doi":"10.1007/s10455-023-09888-y","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the Lax equation in the context of infinite-dimensional Lie algebras. Explicit solutions are discussed in the sequentially complete asymptotic estimate context, and an integral expansion (sums of iterated Riemann integrals over nested commutators with correction term) is derived for the situation that the Lie algebra is inherited by an infinite-dimensional Lie group in Milnor’s sense. In the context of Banach Lie groups (and Lie groups with suitable regularity properties), we generalize the Baker–Campbell–Dynkin–Hausdorff formula to the product integral (with additional nilpotency assumption in the non-Banach case). We combine this formula with the results obtained for the Lax equation to derive an explicit representation of the product integral in terms of the exponential map. An important ingredient in the non-Banach case is an integral transformation that we introduce. This transformation maps continuous Lie algebra-valued curves to smooth ones and leaves the product integral invariant. This transformation is also used to prove a regularity statement in the asymptotic estimate context.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09888-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09888-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the Lax equation in the context of infinite-dimensional Lie algebras. Explicit solutions are discussed in the sequentially complete asymptotic estimate context, and an integral expansion (sums of iterated Riemann integrals over nested commutators with correction term) is derived for the situation that the Lie algebra is inherited by an infinite-dimensional Lie group in Milnor’s sense. In the context of Banach Lie groups (and Lie groups with suitable regularity properties), we generalize the Baker–Campbell–Dynkin–Hausdorff formula to the product integral (with additional nilpotency assumption in the non-Banach case). We combine this formula with the results obtained for the Lax equation to derive an explicit representation of the product integral in terms of the exponential map. An important ingredient in the non-Banach case is an integral transformation that we introduce. This transformation maps continuous Lie algebra-valued curves to smooth ones and leaves the product integral invariant. This transformation is also used to prove a regularity statement in the asymptotic estimate context.

分享
查看原文
渐近估计李群的Lax方程和弱正则性
我们研究了无限维李代数中的Lax方程。在顺序完全渐近估计上下文中讨论了显式解,并针对李代数由Milnor意义上的无穷维李群继承的情况,导出了积分展开式(带校正项的嵌套交换子上的迭代Riemann积分的和)。在Banach李群(以及具有适当正则性的李群)的上下文中,我们将Baker–Campbell–Dynkin–Hausdorff公式推广到乘积积分(在非Banach情况下具有额外的幂零性假设)。我们将这个公式与Lax方程的结果相结合,导出了乘积积分在指数映射方面的显式表示。非Banach情形中的一个重要组成部分是我们引入的积分变换。这种变换将连续李代数值曲线映射到光滑曲线,并使乘积积分保持不变。这种变换也用于证明渐近估计上下文中的正则性陈述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信