{"title":"Structural, morphological, and optical properties of praseodymium and aluminium codoped ZnO nanoparticles","authors":"M. S. Viswaksenan, A. Simi, A. Panneeraselvam","doi":"10.15251/jor.2023.194.351","DOIUrl":null,"url":null,"abstract":"Using a soft chemical process that involves nitrates and heat annealing, nanoparticles of undoped ZnO and praseodymium, aluminum-codoped ZnO may be produced. XRD, SEM with EDS, and FTIR analysis determine nanocatalyst structures, morphologies, and chemical bonding. PL and UV spectroscopy examines optical characteristics. The peak in the FTIR spectral line at 714 cm-1 in the study indicates M-O stretching in the samples and ZnO's interaction with the Pr and Al matrix. XRD patterns indicated prepared nanoparticles with nanosizes ranging from 40.07 to 38.65 to 36.84 to 38.87 to 39.91 nm. SEM analyzed nanoparticle size, shape, and interaction with the Pr and Al matrix. EDS determined NPs purity. UV-vis spectra of ZnO-Pr/Al nanocomposites showed UV absorption similar to ZnO nanoparticles. Doping ZnO with Pr and Al shrinks the bandgap and slows photogenerated electron-hole pair recombination without changing its crystalline structure.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2023.194.351","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Using a soft chemical process that involves nitrates and heat annealing, nanoparticles of undoped ZnO and praseodymium, aluminum-codoped ZnO may be produced. XRD, SEM with EDS, and FTIR analysis determine nanocatalyst structures, morphologies, and chemical bonding. PL and UV spectroscopy examines optical characteristics. The peak in the FTIR spectral line at 714 cm-1 in the study indicates M-O stretching in the samples and ZnO's interaction with the Pr and Al matrix. XRD patterns indicated prepared nanoparticles with nanosizes ranging from 40.07 to 38.65 to 36.84 to 38.87 to 39.91 nm. SEM analyzed nanoparticle size, shape, and interaction with the Pr and Al matrix. EDS determined NPs purity. UV-vis spectra of ZnO-Pr/Al nanocomposites showed UV absorption similar to ZnO nanoparticles. Doping ZnO with Pr and Al shrinks the bandgap and slows photogenerated electron-hole pair recombination without changing its crystalline structure.
期刊介绍:
Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.