Stable black holes: in vacuum and beyond

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Elena Giorgi
{"title":"Stable black holes: in vacuum and beyond","authors":"Elena Giorgi","doi":"10.1090/bull/1781","DOIUrl":null,"url":null,"abstract":"Black holes are important objects in our understanding of the universe, as they represent the extreme nature of General Relativity. The mathematics behind them has surprising geometric properties, and their dynamics is governed by hyperbolic partial differential equations. A basic question one may ask is whether these solutions to the Einstein equation are stable under small perturbations, which is a typical requirement to be physically meaningful. We illustrate the main conjectures regarding the stability problem of known black hole solutions and present some recent theorems regarding the fully nonlinear evolution of black holes in the case of vacuum and their interaction with matter fields.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/bull/1781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

Black holes are important objects in our understanding of the universe, as they represent the extreme nature of General Relativity. The mathematics behind them has surprising geometric properties, and their dynamics is governed by hyperbolic partial differential equations. A basic question one may ask is whether these solutions to the Einstein equation are stable under small perturbations, which is a typical requirement to be physically meaningful. We illustrate the main conjectures regarding the stability problem of known black hole solutions and present some recent theorems regarding the fully nonlinear evolution of black holes in the case of vacuum and their interaction with matter fields.
稳定的黑洞:在真空中和更远的地方
黑洞是我们理解宇宙的重要对象,因为它们代表了广义相对论的极端性质。它们背后的数学具有令人惊讶的几何性质,它们的动力学由双曲偏微分方程控制。人们可能会问的一个基本问题是,爱因斯坦方程的这些解在小扰动下是否稳定,这是具有物理意义的典型要求。我们给出了关于已知黑洞解稳定性问题的主要猜想,并给出了关于真空情况下黑洞的完全非线性演化及其与物质场相互作用的一些最新定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信