Birational Nevanlinna Constants, Beta Constants, and Diophantine Approximation to Closed Subschemes

IF 0.3 4区 数学 Q4 MATHEMATICS
Paul Vojta
{"title":"Birational Nevanlinna Constants, Beta Constants, and Diophantine Approximation to Closed Subschemes","authors":"Paul Vojta","doi":"10.5802/jtnb.1237","DOIUrl":null,"url":null,"abstract":"In an earlier paper (joint with Min Ru), we proved a result on diophantine approximation to Cartier divisors, extending a 2011 result of P. Autissier. This was recently extended to certain closed subschemes (in place of divisors) by Ru and Wang. In this paper we extend this result to a broader class of closed subschemes. We also show that some notions of $\\beta(\\mathscr L,D)$ coincide, and that they can all be evaluated as limits.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1237","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In an earlier paper (joint with Min Ru), we proved a result on diophantine approximation to Cartier divisors, extending a 2011 result of P. Autissier. This was recently extended to certain closed subschemes (in place of divisors) by Ru and Wang. In this paper we extend this result to a broader class of closed subschemes. We also show that some notions of $\beta(\mathscr L,D)$ coincide, and that they can all be evaluated as limits.
闭子模式的Birational Nevanlinna常数、Beta常数和丢番图近似
在之前的一篇论文中(与Min Ru合著),我们证明了Cartier除数的丢芬图近似的一个结果,扩展了P. Autissier 2011年的结果。最近,Ru和Wang将其扩展到某些封闭子方案(代替除数)。在本文中,我们将这一结果推广到更广泛的闭子方案。我们还证明了$\beta(\mathscr L,D)$的一些概念是重合的,并且它们都可以被计算为极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信