Level set mean curvature flow, with Neumann boundary conditions

IF 0.6 4区 数学 Q3 MATHEMATICS
Satoru Aimi
{"title":"Level set mean curvature flow, with Neumann boundary conditions","authors":"Satoru Aimi","doi":"10.14492/hokmj/2020-426","DOIUrl":null,"url":null,"abstract":"We investigate the relation between the level set approach and the varifold approach for the mean curvature flow with Neumann boundary conditions. With an appropriate initial data, we prove that the almost all level sets of the unique viscosity level set solution satisfy Brakke's inequality and a generalized Neumann boundary condition.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/hokmj/2020-426","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We investigate the relation between the level set approach and the varifold approach for the mean curvature flow with Neumann boundary conditions. With an appropriate initial data, we prove that the almost all level sets of the unique viscosity level set solution satisfy Brakke's inequality and a generalized Neumann boundary condition.
水平集平均曲率流,与诺伊曼边界条件
我们研究了具有Neumann边界条件的平均曲率流的水平集方法和变倍方法之间的关系。利用适当的初始数据,我们证明了唯一粘性水平集解的几乎所有水平集都满足Brakke不等式和广义Neumann边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信