Decidability problem for exponential equations in finitely presented groups

Pub Date : 2022-11-22 DOI:10.4153/S0008439522000698
O. Bogopolski, A. Ivanov
{"title":"Decidability problem for exponential equations in finitely presented groups","authors":"O. Bogopolski, A. Ivanov","doi":"10.4153/S0008439522000698","DOIUrl":null,"url":null,"abstract":"Abstract We study the following decision problem: given an exponential equation \n$a_1g_1^{x_1}a_2g_2^{x_2}\\dots a_ng_n^{x_n}=1$\n over a recursively presented group G, decide if it has a solution with all \n$x_i$\n in \n$\\mathbb {Z}$\n . We construct a finitely presented group G where this problem is decidable for equations with one variable and is undecidable for equations with two variables. We also study functions estimating possible solutions of such an equation through the lengths of its coefficients with respect to a given generating set of G. Another result concerns Turing degrees of some natural fragments of the above problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439522000698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We study the following decision problem: given an exponential equation $a_1g_1^{x_1}a_2g_2^{x_2}\dots a_ng_n^{x_n}=1$ over a recursively presented group G, decide if it has a solution with all $x_i$ in $\mathbb {Z}$ . We construct a finitely presented group G where this problem is decidable for equations with one variable and is undecidable for equations with two variables. We also study functions estimating possible solutions of such an equation through the lengths of its coefficients with respect to a given generating set of G. Another result concerns Turing degrees of some natural fragments of the above problem.
分享
查看原文
有限存在群中指数方程的可判定性问题
摘要我们研究了以下决策问题:给定一个指数方程$a_1g_1^{x_1}a_2g_2^{x_2}\dots a_ng_n^{x_n}=1$在递归呈现的群G上,决定它是否具有$\mathbb{Z}$中所有$x_i$的解。我们构造了一个有限存在的群G,其中这个问题对于一个变量的方程是可判定的,对于两个变量的等式是不可判定的。我们还研究了通过其系数相对于给定的G生成集的长度来估计这种方程的可能解的函数。另一个结果涉及上述问题的一些自然片段的图灵度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信