Crystal Structure and Catalytic Activity of Poly[bis(3-bromo-2-hydroxybenzaldehyde)-2-aminopyrimidinemagnesium(II)] for Hydrogenation of 1,3-Butadiene
IF 1.3
Q3 ENGINEERING, CHEMICAL
Lihua Wang, F. Kong, X. Tai
求助PDF
{"title":"Crystal Structure and Catalytic Activity of Poly[bis(3-bromo-2-hydroxybenzaldehyde)-2-aminopyrimidinemagnesium(II)] for Hydrogenation of 1,3-Butadiene","authors":"Lihua Wang, F. Kong, X. Tai","doi":"10.9767/BCREC.16.2.10421.260-266","DOIUrl":null,"url":null,"abstract":"A new six-coordinated Mn(II) coordination polymer, [Mn(L1)(L2)2]n (L1 = 2-aminopyrimidine, HL2 = 3-bromo-2hydroxybenzaldehyde) was synthesized by 3-bromo-2-hydroxybenzaldehyde, NaOH, 2-aminopyrimidine and manganese(II) acetate dihydrate. The Mn(II) coordination polymer was structural characterized by elemental analysis and single crystal X-ray diffraction. The results show that each Mn(II) ion is six-coordinated with two phenolic hydroxyl O atoms from two 3-bromo-2-hydroxybenzaldehyde ligands (O1 and O4), two formyl group O atoms from two 3-bromo-2-hydroxybenzaldehyde ligands (O2 and O3), and two N atoms from two 2-aminopyrimidine molecules (N1A and N2), and forms a distorted octahedral coordination geometry. The Mn(II) coordination polymer displays a 1D chained structure by the bridge effect of 2-aminopyrimidine N atoms. The catalytic activities of Mn(II) coordination polymer and Pd@Mn(II) coordination polymer for hydrogenation of 1,3-butadiene have been investigated. The Pd@Mn(II) coordination polymer catalyst shows the good catalytic activity and selectivity in the hydrogenation of 1,3-butadiene. The 1,3-butadiene conversion is 61.3% at 70 °C, and the selectivity to total butene is close to 100%. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":"16 1","pages":"260-266"},"PeriodicalIF":1.3000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering and Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/BCREC.16.2.10421.260-266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 4
引用
批量引用
Abstract
A new six-coordinated Mn(II) coordination polymer, [Mn(L1)(L2)2]n (L1 = 2-aminopyrimidine, HL2 = 3-bromo-2hydroxybenzaldehyde) was synthesized by 3-bromo-2-hydroxybenzaldehyde, NaOH, 2-aminopyrimidine and manganese(II) acetate dihydrate. The Mn(II) coordination polymer was structural characterized by elemental analysis and single crystal X-ray diffraction. The results show that each Mn(II) ion is six-coordinated with two phenolic hydroxyl O atoms from two 3-bromo-2-hydroxybenzaldehyde ligands (O1 and O4), two formyl group O atoms from two 3-bromo-2-hydroxybenzaldehyde ligands (O2 and O3), and two N atoms from two 2-aminopyrimidine molecules (N1A and N2), and forms a distorted octahedral coordination geometry. The Mn(II) coordination polymer displays a 1D chained structure by the bridge effect of 2-aminopyrimidine N atoms. The catalytic activities of Mn(II) coordination polymer and Pd@Mn(II) coordination polymer for hydrogenation of 1,3-butadiene have been investigated. The Pd@Mn(II) coordination polymer catalyst shows the good catalytic activity and selectivity in the hydrogenation of 1,3-butadiene. The 1,3-butadiene conversion is 61.3% at 70 °C, and the selectivity to total butene is close to 100%. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
聚双(3-溴-2-羟基苯甲醛)-2-氨基嘧啶镁(II)的晶体结构及对1,3-丁二烯加氢的催化活性
以3-溴-2-羟基苯甲醛、氢氧化钠、2-氨基嘧啶和二水合乙酸锰为原料合成了一种新型六配位Mn(II)配位聚合物[Mn(L1)(L2)2]n (L1 = 2-氨基嘧啶,HL2 = 3-溴-2羟基苯甲醛)。通过元素分析和x射线单晶衍射对Mn(II)配位聚合物进行了结构表征。结果表明,每个Mn(II)离子分别与两个3-溴-2-羟基苯甲醛配体(O1和O4)上的两个酚羟基O原子、两个3-溴-2-羟基苯甲醛配体(O2和O3)上的两个甲酰O原子和两个2-氨基嘧啶分子(N1A和N2)上的两个N原子六配位,形成畸变八面体配位几何。在2-氨基嘧啶N原子的桥接作用下,Mn(II)配位聚合物呈现出一维链状结构。研究了Mn(II)配位聚合物和Pd@Mn(II)配位聚合物对1,3-丁二烯加氢反应的催化活性。Pd@Mn(II)配位聚合物催化剂对1,3-丁二烯加氢反应具有良好的催化活性和选择性。在70℃时,1,3-丁二烯的转化率为61.3%,对总丁烯的选择性接近100%。版权所有©2021作者,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
来源期刊
期刊介绍:
Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on general chemical engineering process are not covered and out of scope of this journal