A systematic review of methods for aligning, mapping, merging taxonomies in information sciences

IF 1.7 3区 管理学 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE
Yi-Yun Cheng, Yilin Xia
{"title":"A systematic review of methods for aligning, mapping, merging taxonomies in information sciences","authors":"Yi-Yun Cheng, Yilin Xia","doi":"10.1108/jd-01-2023-0003","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this study is to provide a systematic literature review on taxonomy alignment methods in information science to explore the common research pipeline and characteristics.Design/methodology/approachThe authors implement a five-step systematic literature review process relating to taxonomy alignment. They take on a knowledge organization system (KOS) perspective, and specifically examining the level of KOS on “taxonomies.”FindingsThey synthesize the matching dimensions of 28 taxonomy alignment studies in terms of the taxonomy input, approach and output. In the input dimension, they develop three characteristics: tree shapes, variable names and symmetry; for approach: methodology, unit of matching, comparison type and relation type; for output: the number of merged solutions and whether original taxonomies are preserved in the solutions.Research limitations/implicationsThe main research implications of this study are threefold: (1) to enhance the understanding of the characteristics of a taxonomy alignment work; (2) to provide a novel categorization of taxonomy alignment approaches into natural language processing approach, logic-based approach and heuristic-based approach; (3) to provide a methodological guideline on the must-include characteristics for future taxonomy alignment research.Originality/valueThere is no existing comprehensive review on the alignment of “taxonomies”. Further, no other mapping survey research has discussed the comparison from a KOS perspective. Using a KOS lens is critical in understanding the broader picture of what other similar systems of organizations are, and enables us to define taxonomies more precisely.","PeriodicalId":47969,"journal":{"name":"Journal of Documentation","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Documentation","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/jd-01-2023-0003","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 2

Abstract

PurposeThe purpose of this study is to provide a systematic literature review on taxonomy alignment methods in information science to explore the common research pipeline and characteristics.Design/methodology/approachThe authors implement a five-step systematic literature review process relating to taxonomy alignment. They take on a knowledge organization system (KOS) perspective, and specifically examining the level of KOS on “taxonomies.”FindingsThey synthesize the matching dimensions of 28 taxonomy alignment studies in terms of the taxonomy input, approach and output. In the input dimension, they develop three characteristics: tree shapes, variable names and symmetry; for approach: methodology, unit of matching, comparison type and relation type; for output: the number of merged solutions and whether original taxonomies are preserved in the solutions.Research limitations/implicationsThe main research implications of this study are threefold: (1) to enhance the understanding of the characteristics of a taxonomy alignment work; (2) to provide a novel categorization of taxonomy alignment approaches into natural language processing approach, logic-based approach and heuristic-based approach; (3) to provide a methodological guideline on the must-include characteristics for future taxonomy alignment research.Originality/valueThere is no existing comprehensive review on the alignment of “taxonomies”. Further, no other mapping survey research has discussed the comparison from a KOS perspective. Using a KOS lens is critical in understanding the broader picture of what other similar systems of organizations are, and enables us to define taxonomies more precisely.
对信息科学中排列、映射、合并分类方法的系统回顾
目的对信息学领域的分类比对方法进行系统的文献综述,探讨其共性研究思路和特点。设计/方法/方法作者实施了与分类校准相关的五步系统文献综述过程。他们采用了知识组织系统(KOS)的视角,并在“分类法”上特别检查了KOS的级别。结果从分类输入、方法和输出三个方面综合了28项分类比对研究的匹配维度。在输入维度上,它们发展出三个特征:树形、变量名和对称性;方法:方法、匹配单元、比较类型和关系类型;对于输出:合并解决方案的数量,以及解决方案中是否保留了原始分类法。本研究的主要研究意义有三个方面:(1)加强对分类比对工作特征的认识;(2)将分类法对齐方法分为自然语言处理方法、基于逻辑的方法和基于启发式的方法;(3)为今后的分类比对研究提供必须包含的特征的方法学指导。原创性/价值目前没有对“分类”的一致性进行全面审查。此外,没有其他测绘调查研究从KOS的角度进行了比较。使用KOS视角对于理解其他类似组织系统的更广泛图景至关重要,并使我们能够更精确地定义分类法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Documentation
Journal of Documentation INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
4.20
自引率
14.30%
发文量
72
期刊介绍: The scope of the Journal of Documentation is broadly information sciences, encompassing all of the academic and professional disciplines which deal with recorded information. These include, but are certainly not limited to: ■Information science, librarianship and related disciplines ■Information and knowledge management ■Information and knowledge organisation ■Information seeking and retrieval, and human information behaviour ■Information and digital literacies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信